A cytotoxic T lymphocyte (CTL) kills an infected or tumorigenic cell by Ca(2+)-dependent exocytosis of cytolytic granules at the immunological synapse formed between the two cells. Although inositol 1,4,5-trisphosphate (IP(3))-mediated Ca(2+) release from the endoplasmic reticulum activates the store-operated Ca(2+)-influx pathway that is necessary for exocytosis, it is not a sufficient stimulus. Here we identify the Ca(2+)-mobilizing messenger nicotinic acid adenine dinucleotide phosphate (NAADP) and its recently identified molecular target, two-pore channels (TPCs), as being important for T cell receptor signaling in CTLs.
View Article and Find Full Text PDFIrradiation of a mixture of 4-methoxyphenacyl-caged (S)-glutamate and 4,5-dimethoxy-2-nitrobenzyl-caged γ-amino butyric acid (GABA) on neurons, at ~260 nm, evokes selective photorelease of (S)-glutamate (Glu) whereas photolysis at 405 nm causes selective photorelease of GABA.
View Article and Find Full Text PDFThe synthesis of a range of caged TRPV1 agonists and antagonists is reported. The photolysis characteristics of these compounds, when irradiated with a 355 nm laser, have been studied and in all cases the desired compound was produced. Photolysis of a caged TRPV1 agonist in cultured trigeminal neurons produced responses that were consistent with the activation of TRPV1 receptors.
View Article and Find Full Text PDFThe study of mitochondria and mitochondrial Ca2+ signalling in localised regions is hampered by the lack of tools that can uncouple the mitochondrial membrane potential (DeltaPsi(m)) in a spatially predefined manner. Although there are a number of existing mitochondrial uncouplers, these compounds are necessarily membrane permeant and therefore exert their actions in a spatially unselective manner. Herein, we report the synthesis of the first caged (photolabile protected) mitochondrial uncouplers, based on the tyrphostin AG10.
View Article and Find Full Text PDF