Elevation of dietary or brain leucine appears to suppress food intake via a mechanism involving mechanistic target of rapamycin, AMPK, and/or branched chain amino acid (BCAA) metabolism. Mice bearing a deletion of mitochondrial branched chain aminotransferase (BCATm), which is expressed in peripheral tissues (muscle) and brain glia, exhibit marked increases in circulating BCAAs. Here, we test whether this increase alters feeding behavior and brain neuropeptide expression.
View Article and Find Full Text PDFLong term consumption of a high fat diet (HFD) contributes to increased morbidity and mortality. Yet the specific effects of HFD consumption on brain aging are poorly understood. In the present study 20-month old male C57Bl/6 mice were fed either 'western diet' (41% fat), very high fat lard diet (60% fat), or corresponding control diets for 16 weeks and then assessed for changes in metabolism and brain homeostasis.
View Article and Find Full Text PDFIn addition to suppressing food intake, leptin reduces body adiposity by altering metabolism within peripheral tissues such as adipose tissue and muscle. Recent work indicates that leptin action within the brain is sufficient to promote glucose uptake and increase fat oxidation within skeletal muscle, and that these effects are dependent on the sympathetic nervous system. To identify neuronal circuits through which leptin impacts skeletal muscle metabolism, we used LepRb-GFP reporter mice in combination with muscle-specific injection of an mRFP-expressing pseudorabies virus (PRV), which acts as a transsynaptic retrograde tracer.
View Article and Find Full Text PDFAfter a period of forced overfeeding, many individuals actively compensate for this weight gain by reducing food intake and maintaining this state of hypophagia well into the post-overfeeding period. Our central goal is to define the mechanism underlying this adaptive reduction in food intake. When male Long Evans rats were implanted with indwelling gastric cannula and overfed a liquid low-fat (10% fat) diet for 17 days, overfed rats exhibited increased weight gain (P<0.
View Article and Find Full Text PDFThe aberrant expression of DNA methyltransferase 1 (DNMT1) in cloned embryos has been implicated as a possible factor in the improper donor genome reprogramming during nuclear transfer. DNMT1 is responsible for maintaining DNA methylation and the subsequent differentiation status of somatic cells. The presence of DNMT1 transcript in the donor cell may contribute to perpetuation of the highly methylated status of the somatic nuclei in cloned embryos.
View Article and Find Full Text PDFThis study was undertaken to investigate the effects of prenatal and postnatal exposure to high fat diet on the brain. Female rats were divided into high fat diet (HFD) and control diet (CD) groups 4 weeks prior to breeding and throughout gestation and lactation. After weaning, male progeny were placed on a chow diet until 8 weeks old, and then segregated into HFD or CD groups.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
May 2009
We tested the hypothesis that maternal consumption of dietary fat, independent from obesity, increases serum leptin in neonatal pups and predisposes them to adult obesity. Female rats either were fed a high-fat (HF) diet or a low-fat (LF) diet or were fed the HF diet but pair fed (PF) to the caloric intake of the LF group for 4 wk before breeding and throughout gestation and lactation. Dams consuming the HF diet had increased adiposity and were hyperphagic.
View Article and Find Full Text PDFEvidence indicates that failure of nuclear transfer (NT) embryos to develop normally can be attributed, at least partially, to the use of differentiated cells as the donor karyoplast. Blastocyst production and development to term of cloned embryos has been hypothesized to differ between population doublings of the same cell line as a consequence of changes in the levels of DNA methyltransferase 1 (DNMT1) and methylated DNA during in vitro culture. The objective of this study was to determine embryo production, developmental potential, and gene expression patterns of prehatched and posthatched embryos generated using donor cells with different levels of DNMT1 transcript.
View Article and Find Full Text PDFEvidence indicates that failure of nuclear transfer (NT) embryos to develop normally can be attributed, at least partially, to the use of a differentiated cell nucleus as the donor karyoplast. It has been hypothesized that blastocyst production and development to term of cloned embryos may differ between population doublings (PDs) of the same cell line as a consequence of changes in DNA methylation and histone acetylation patterns during in vitro culture. The objective of this study was to determine gene expression patterns of the chromatin remodeling proteins DNA methyltransferase-1 (Dnmt1), methyl CpG binding protein-2 (MeCP2), and histone deacetyltransferse-1 (HDAC1), in addition, to measuring levels of DNA methylation and histone acetylation of bovine fibroblast cells at different PDs.
View Article and Find Full Text PDF