Publications by authors named "Megan Mancuso"

Article Synopsis
  • Bone is a living material that can change its structure in response to different internal and external forces, helping it adapt to loads and repair damage.
  • The review examines how various external stimuli, like electromagnetic fields and mechanical vibration, can influence bone adaptation, alongside traditional loads from activities like exercise.
  • It addresses cases like spinal cord injury where reduced mechanical loading causes significant bone loss and outlines areas for future research in the field.
View Article and Find Full Text PDF

Most information about distal radius microstructure is based on the non-dominant forearm, with little known about the factors that contribute to bilateral asymmetries in the general population, or what factors may influence bilateral changes over time. Here, we analyzed bilateral high resolution peripheral quantitative computed tomography (HRpQCT) data collected over a 12-month period as part of a clinical trial that prescribed a well-controlled, compressive loading task to the nondominant forearm. Baseline data from 102 women age 21-40, and longitudinal data from 66 women who completed the 12-month trial, were examined to determine factors responsible for side-to-side asymmetries in bone structure and change in structure over time.

View Article and Find Full Text PDF

Work in animal models suggests that bone structure adapts to local bone strain, but this relationship has not been comprehensively studied in humans. Here, we quantified the influence of strain magnitude and gradient on bone adaptation in the forearm of premenopausal women performing compressive forearm loading (n = 11) and nonloading controls (n = 10). High resolution peripheral quantitative computed tomography (HRpQCT) scans of the distal radius acquired at baseline and 12 months of a randomized controlled experiment were used to identify local sites of bone formation and resorption.

View Article and Find Full Text PDF

Although strong evidence exists that certain activities can increase bone density and structure in people, it is unclear what specific mechanical factors govern the response. This is important because understanding the effect of mechanical signals on bone could contribute to more effective osteoporosis prevention methods and efficient clinical trial design. The degree to which strain rate and magnitude govern bone adaptation in humans has never been prospectively tested.

View Article and Find Full Text PDF

While weight-bearing and resistive exercise modestly increases aBMD, the precise relationship between physical activity and bone microstructure, and strain in humans is not known. Previously, we established a voluntary upper-extremity loading model that assigns a person's target force based on their subject-specific, continuum FE-estimated radius bone strain. Here, our purpose was to quantify the inter-individual variability in radius microstructure and FE-estimated strain explained by site-specific mechanical loading history, and to determine whether variability in strain is captured by aBMD, a clinically relevant measure of bone density and fracture risk.

View Article and Find Full Text PDF

In 2011 over 1.7 million people were hospitalized because of a fragility fracture, and direct costs associated with osteoporosis treatment exceeded 70 billion dollars in the United States. Failure to reach and maintain optimal peak bone mass during adulthood is a critical factor in determining fragility fracture risk later in life.

View Article and Find Full Text PDF

Fractures resulting in impaired healing can be treated with mechanical stimulation via external fixators. To examine the effect of mechanical stimulation on fracture healing, we developed an external fixator for use in a mouse model. A 0.

View Article and Find Full Text PDF