Background: Stubborn dyschromia such as melasma and post-inflammatory hyperpigmentation (PIH) are leading causes for cosmetic consultation. Topical treatment is challenging, using a range of modalities, to stop, hinder, and/or prevent steps in the pigment production process. Tranexamic acid (TXA), a potent plasmin inhibitor, is proposed to control pigmentation by inhibiting the release of inflammatory mediators involved in triggering melanogenesis.
View Article and Find Full Text PDFExcessive ultraviolet (UV) radiation induces acute and chronic effects on the skin, eye and immune system. Personalized monitoring of UV radiation is thus paramount to measure the extent of personal sun exposure, which could vary with environment, lifestyle, and sunscreen use. Here, we demonstrate an ultralow modulus, stretchable, skin-mounted UV patch that measures personal UV doses.
View Article and Find Full Text PDFBackground: Hyaluronic acid (HA), the major glycosaminoglycan present in the human skin, is a key contributor to water retention and mechanical support in skin. The level, size, and functionality of cutaneous HA are known to diminish with age. Topical treatments designed to increase the HA content of skin have been met with limited success.
View Article and Find Full Text PDFPrecise, quantitative monitoring of hydration levels in the near surface regions of the skin can be useful in preventing skin-based pathologies, and regulating external appearance. Here we introduce multimodal sensors with important capabilities in this context, rendered in soft, ultrathin, 'skin-like' formats with numerous advantages over alternative technologies, including the ability to establish intimate, conformal contact without applied pressure, and to provide spatiotemporally resolved data on both electrical and thermal transport properties from sensitive regions of the skin. Systematic studies and computational models establish the underlying measurement principles and associated approaches for determination of temperature, thermal conductivity, thermal diffusivity, volumetric heat capacity, and electrical impedance using simple analysis algorithms.
View Article and Find Full Text PDFCapabilities in health monitoring enabled by capture and quantitative chemical analysis of sweat could complement, or potentially obviate the need for, approaches based on sporadic assessment of blood samples. Established sweat monitoring technologies use simple fabric swatches and are limited to basic analysis in controlled laboratory or hospital settings. We present a collection of materials and device designs for soft, flexible, and stretchable microfluidic systems, including embodiments that integrate wireless communication electronics, which can intimately and robustly bond to the surface of the skin without chemical and mechanical irritation.
View Article and Find Full Text PDFMeasurements of the thermal transport properties of the skin can reveal changes in physical and chemical states of relevance to dermatological health, skin structure and activity, thermoregulation and other aspects of human physiology. Existing methods for in vivo evaluations demand complex systems for laser heating and infrared thermography, or they require rigid, invasive probes; neither can apply to arbitrary regions of the body, offers modes for rapid spatial mapping, or enables continuous monitoring outside of laboratory settings. Here we describe human clinical studies using mechanically soft arrays of thermal actuators and sensors that laminate onto the skin to provide rapid, quantitative in vivo determination of both the thermal conductivity and thermal diffusivity, in a completely non-invasive manner.
View Article and Find Full Text PDFPurpose: This phase II study evaluated bortezomib-based secondary induction and stem cell mobilization in 38 transplant-eligible patients with myeloma who had an incomplete and stalled response to, or had relapsed after, previous immunomodulatory drug-based induction.
Experimental Design: Patients received up to six 21-day cycles of bortezomib plus dexamethasone, with added liposomal doxorubicin for patients not achieving partial response or better by cycle 2 or very good partial response or better (≥VGPR) by cycle 4 (DoVeD), followed by bortezomib, high-dose cyclophosphamide, and filgrastim mobilization. Gene expression/signaling pathway analyses were conducted in purified CD34+ cells after bortezomib-based mobilization and compared against patients who received only filgrastim ± cyclophosphamide.
Antioxidants are molecules capable of inhibiting the oxidation of other molecules. Although oxidation reactions are essential for life, they can also be damaging. All living organisms maintain complex systems of multiple types of antioxidants to protect their cells from oxidative damage.
View Article and Find Full Text PDF