Cancer remains one of the most complex challenges in modern medicine, with intricate relationships between immune responses and tumor development. This article examines a groundbreaking study by Fesneau and colleagues, published in Nature Immunology. This elegant body of work explores the link between chronic inflammation and cancer, particularly focusing on Th17 cells involved in intestinal cancer initiation.
View Article and Find Full Text PDFBackground: How distinct methods of host preconditioning impact the efficacy of adoptively transferred antitumor T helper cells is unknown.
Methods: CD4 T cells with a transgenic T-cell receptor that recognize tyrosinase-related peptide (TRP)-1 melanoma antigen were polarized to the T helper 17 (Th17) phenotype and then transferred into melanoma-bearing mice preconditioned with either total body irradiation or chemotherapy.
Results: We found that preconditioning mice with a non-myeloablative dose of total body irradiation (TBI of 5 Gy) was more effective than using an equivalently dosed non-myeloablative chemotherapy (cyclophosphamide (CTX) of 200 mg/kg) at augmenting therapeutic activity of antitumor TRP-1 Th17 cells.
Background: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive tumor. Prognosis is poor and survival is low in patients diagnosed with this disease, with a survival rate of ~12% at 5 years. Immunotherapy, including adoptive T cell transfer therapy, has not impacted the outcomes in patients with PDAC, due in part to the hostile tumor microenvironment (TME) which limits T cell trafficking and persistence.
View Article and Find Full Text PDFBackground: Mechanisms by which distinct methods of host preconditioning impact the efficacy of adoptively transferred antitumor T helper cells is unknown.
Methods: CD4 T cells with a transgenic TCR that recognize TRP-1 melanoma antigen were polarized to the T helper 17 (Th17) phenotype and then transferred into melanoma-bearing mice preconditioned with either total body irradiation or chemotherapy.
Results: We found that preconditioning mice with a non-myeloablative dose of total body irradiation (TBI of 5 Gy) was more effective than using an equivalently dosed non-myeloablative chemotherapy (CTX at 200 mg/kg) at augmenting therapeutic activity of anti-tumor TRP-1 Th17 cells.
Unlabelled: Generating stem-like memory T cells (TSCM) is a potential strategy to improve adoptive immunotherapy. Elucidating optimal ways to modulate signaling pathways that enrich TSCM properties could identify approaches to achieve this goal. We discovered herein that blocking the PI3Kδ pathway pharmaceutically to varying degrees can generate T cells with increasingly heightened stemness properties, based on the progressive enrichment of the transcription factors Tcf1 and Lef1.
View Article and Find Full Text PDFCheckpoint inhibition using Fc-containing monoclonal antibodies has emerged as a powerful therapeutic approach to augment antitumor immunity. We recently showed that FcγRIIB, the only inhibitory IgG-Fc receptor, is expressed on a population of highly differentiated effector CD8 T cells in the tumors of mice and humans, raising the possibility that CD8 T cell responses may be directly modulated by checkpoint inhibitor binding to T cell-expressed FcγRIIB. Here, we show that despite exhibiting strong proliferative and cytokine responses at baseline, human FcγRIIB CD8 T cells exhibited reduced responsiveness to both PD-1 and CTLA-4 checkpoint inhibition as compared with FcγRIIB CD8 T cells in vitro.
View Article and Find Full Text PDFIL-17-producing antigen-specific human T cells elicit potent antitumor activity in mice. Yet, refinement of this approach is needed to position it for clinical use. While activation signal strength regulates IL-17 production by CD4 T cells, the degree to which T cell antigen receptor (TCR) and costimulation signal strength influences Th17 immunity remains unknown.
View Article and Find Full Text PDFGenerating stem memory T cells (T ) is a key goal for improving cancer immunotherapy. Yet, the optimal way to modulate signaling pathways that enrich T properties remains elusive. Here, we discovered that the degree to which the PI3Kδ pathway is blocked pharmaceutically can generate T cells with differential levels of stemness properties.
View Article and Find Full Text PDFBackground: Adoptive T cell transfer (ACT) therapy improves outcomes in patients with advanced malignancies, yet many individuals relapse due to the infusion of T cells with poor function or persistence. Toll-like receptor (TLR) agonists can invigorate antitumor T cell responses when administered directly to patients, but these responses often coincide with toxicities. We posited that TLR agonists could be repurposed ex vivo to condition T cells with remarkable potency in vivo, circumventing TLR-related toxicity.
View Article and Find Full Text PDFOral cavity squamous cell carcinoma (OCSCC) is a prevalent surgically treated subset of head and neck cancer with frequent recurrence and poor survival. Immunotherapy has demonstrated efficacy in recurrent/metastatic head and neck cancer. However, whether antitumor responses could be fostered by neoadjuvant presurgical immunotherapy remains unclear.
View Article and Find Full Text PDFAdoptive transfer of tumor-infiltrating lymphocytes (TIL) elicits the regression of metastatic malignancies, yet a low proportion of patients achieve complete durable responses. The high incidence of relapse in these patients highlights the need to better understand mechanisms of tumor escape from T cell control. While melanoma has provided the foundation for developing TIL therapy, much less is known about TIL efficacy and relapse in other malignancies.
View Article and Find Full Text PDFEmerging reports show that metabolic pathways can be targeted to enhance T cell-mediated immunity to tumors. Yet, tumors consume key metabolites in the host to survive, thus robbing T cells of these nutrients to function and thrive. T cells are often deprived of basic building blocks for energy in the tumor, including glucose and amino acids needed to proliferate or produce cytotoxic molecules against tumors.
View Article and Find Full Text PDFHow naturally arising human CD4 T helper subsets affect cancer immunotherapy is unclear. We reported that human CD4CD26 T cells elicit potent immunity against solid tumors. As CD26 T cells are often categorized as T17 cells for their IL-17 production and high CD26 expression, we posited these populations would have similar molecular properties.
View Article and Find Full Text PDFThe accessibility of adoptive T-cell transfer therapies (ACT) is hindered by the cost and time required for product development. Here we describe a streamlined ACT protocol using Th17 cells expanded only 4 days . While shortening expansion compromised cell yield, this method licensed Th17 cells to eradicate large tumors to a greater extent than cells expanded longer term.
View Article and Find Full Text PDFAdoptive T cell transfer therapy induces objective responses in patients with advanced malignancies. Despite these results, some individuals do not respond due to the generation of terminally differentiated T cells during the expansion protocol. As the gamma and delta catalytic subunits in the PI3K pathway are abundant in leukocytes and involved in cell activation, we posited that blocking both subunits ex vivo with the inhibitor IPI-145 would prevent their differentiation, thereby increasing antitumor activity in vivo.
View Article and Find Full Text PDFAdoptive T cell transfer therapy (ACT) using tumor infiltrating lymphocytes or lymphocytes redirected with antigen receptors (CAR or TCR) has revolutionized the field of cancer immunotherapy. Although CAR T cell therapy mediates robust responses in patients with hematological malignancies, this approach has been less effective for treating patients with solid tumors. Additionally, toxicities post T cell infusion highlight the need for safer ACT protocols.
View Article and Find Full Text PDFGenetic redirection of T lymphocytes with chimeric antigen receptors (CARs) has soared from treating cancers preclinically to FDA approval for hematologic malignancies and commercial-grade production scale in under 30 years. To date, solid tumors are less susceptible to CAR therapies and instead have been treated more successfully with immune checkpoint blockade or tumor-infiltrating lymphocyte therapy. Here, we discuss the current challenges in treating solid tumors with CAR T cells, and the obstacles within the host and tumor microenvironment hindering their efficacy.
View Article and Find Full Text PDFAdoptive T-cell transfer therapy is an FDA- approved treatment for leukemia that relies on the expansion and reinfusion of a patient's immune cells, which can be engineered with a chimeric antigen receptor (CAR) for more efficient tumor recognition. Type 17 T cells, controlled transcriptionally by RORγ, have been reported to mediate potent antitumor effects superior to those observed with conventionally expanded T cells. Here, we demonstrate that addition of a synthetic, small-molecule RORγ agonist during expansion potentiates the antitumor activity of human Th17 and Tc17 cells redirected with a CAR.
View Article and Find Full Text PDFTherapeutic outcomes for adoptive cell transfer (ACT) therapy are constrained by the quality of the infused T cells. The rapid expansion necessary to obtain large numbers of cells results in a more terminally differentiated phenotype with decreased durability and functionality. N-acetyl cysteine (NAC) protects against activation-induced cell death (AICD) and improves anti-tumor efficacy of Pmel-1 T cells in vivo.
View Article and Find Full Text PDFCD8 T lymphocytes mediate potent immune responses against tumor, but the role of human CD4 T cell subsets in cancer immunotherapy remains ill-defined. Herein, we exhibit that CD26 identifies three T helper subsets with distinct immunological properties in both healthy individuals and cancer patients. Although CD26 T cells possess a regulatory phenotype, CD26 T cells are mainly naive and CD26 T cells appear terminally differentiated and exhausted.
View Article and Find Full Text PDFPhosphatidylinositol-3-kinase p110δ (PI3Kδ) inhibition by Idelalisib (CAL-101) in hematological malignancies directly induces apoptosis in cancer cells and disrupts immunological tolerance by depleting regulatory T cells. Yet, little is known about the direct impact of PI3Kδ blockade on effector T cells from CAL-101 therapy. Herein, we demonstrate a direct effect of p110δ inactivation CAL-101 on murine and human CD8 T cells that promotes a strong undifferentiated phenotype (elevated CD62L/CCR7, CD127, and Tcf7).
View Article and Find Full Text PDFAdoptive T cell transfer (ACT) can mediate objective responses in patients with advanced malignancies. There have been major advances in this field, including the optimization of the generation of tumor-reactive lymphocytes to ample numbers for effective ACT therapy via the use of natural and artificial antigen presenting cells (APCs). Herein we review the basic properties of APCs and how they have been manufactured through the years to augment vaccine and T cell-based cancer therapies.
View Article and Find Full Text PDFICOS costimulation generates Th17 cells with durable memory responses to tumor. Herein, we found that ICOS induces PI3K/p110δ/Akt and Wnt/β-catenin pathways in Th17 cells. Coinhibiting PI3Kδ and β-catenin altered the biological fate of Th17 cells.
View Article and Find Full Text PDF