Drugs that induce reversible slowing of metabolic and physiological processes would have great value for organ preservation, especially for organs with high susceptibility to hypoxia-reperfusion injury, such as the heart. Using whole-organism screening of metabolism, mobility, and development in , we identified an existing drug, SNC80, that rapidly and reversibly slows biochemical and metabolic activities while preserving cell and tissue viability. Although SNC80 was developed as a delta opioid receptor activator, we discovered that its ability to slow metabolism is independent of its opioid modulating activity as a novel SNC80 analog (WB3) with almost 1000 times less delta opioid receptor binding activity is equally active.
View Article and Find Full Text PDFAchieving a reversible decrease of metabolism and other physiological processes in the whole organism, as occurs in animals that experience torpor or hibernation, could contribute to increased survival after serious injury. Using a Bayesian network tool with transcriptomic data and chemical structure similarity assessments, we predicted that the Alzheimer's disease drug donepezil (DNP) could be a promising candidate for a small molecule drug that might induce a torpor-like state. This was confirmed in a screening study with tadpoles, a nonhibernator whole animal model.
View Article and Find Full Text PDFInformation for organismal patterning can come from a variety of sources. We investigate the possibility that instructive influences for normal embryonic development are provided not only at the level of cells within the embryo, but also via interactions between embryos. To explore this, we challenge groups of embryos with disruptors of normal development while varying group size.
View Article and Find Full Text PDFDrug repurposing requires distinguishing established drug class targets from novel molecule-specific mechanisms and rapidly derisking their therapeutic potential in a time-critical manner, particularly in a pandemic scenario. In response to the challenge to rapidly identify treatment options for COVID-19, several studies reported that statins, as a drug class, reduce mortality in these patients. However, it is unknown if different statins exhibit consistent function or may have varying therapeutic benefit.
View Article and Find Full Text PDFCurrent therapeutic strategies against bacterial infections focus on reduction of pathogen load using antibiotics; however, stimulation of host tolerance to infection in the presence of pathogens might offer an alternative approach. Computational transcriptomics and Xenopus laevis embryos are used to discover infection response pathways, identify potential tolerance inducer drugs, and validate their ability to induce broad tolerance. Xenopus exhibits natural tolerance to Acinetobacter baumanii, Klebsiella pneumoniae, Staphylococcus aureus, and Streptococcus pneumoniae bacteria, whereas Aeromonas hydrophila and Pseudomonas aeruginosa produce lethal infections.
View Article and Find Full Text PDFImportance: Drug repurposing requires distinguishing established drug class targets from novel molecule-specific mechanisms and rapidly derisking their therapeutic potential in a time-critical manner, particularly in a pandemic scenario. In response to the challenge to rapidly identify treatment options for COVID-19, several studies reported that statins, as a drug class, reduce mortality in these patients. However, it is unknown if different statins exhibit consistent function or may have varying therapeutic benefit.
View Article and Find Full Text PDFPhysarum polycephalum is a protist slime mould that exhibits a high degree of responsiveness to its environment through a complex network of tubes and cytoskeletal components that coordinate behavior across its unicellular, multinucleated body. Physarum has been used to study decision making, problem solving, and mechanosensation in aneural biological systems. The robust generative and repair capacities of Physarum also enable the study of whole-body regeneration within a relatively simple model system.
View Article and Find Full Text PDFLimb regeneration is a frontier in biomedical science. Identifying triggers of innate morphogenetic responses in vivo to induce the growth of healthy patterned tissue would address the needs of millions of patients, from diabetics to victims of trauma. Organisms such as -whose limited regenerative capacities in adulthood mirror those of humans-are important models with which to test interventions that can restore form and function.
View Article and Find Full Text PDFIntroduction: Temporomandibular joint (TMJ) pain is among the most prevalent musculoskeletal conditions and can result from atypical joint loading. Although TMJ pain is typically self-resolving, 15% of patients develop chronic TMJ pain that is recalcitrant to therapy and may be attributed to changes in pain processing centers. Although TMJ overloading induces pain and osteoarthritis, whether neuronal modifications in the trigeminal sensory system contribute to persistent TMJ pain is unknown.
View Article and Find Full Text PDFMechanical stress to the temporomandibular joint (TMJ) is an important factor in cartilage degeneration, with both clinical and preclinical studies suggesting that repeated TMJ overloading could contribute to pain, inflammation, and/or structural damage in the joint. However, the relationship between pain severity and early signs of cartilage matrix microstructural dysregulation is not understood, limiting the advancement of diagnoses and treatments for temporomandibular joint-osteoarthritis (TMJ-OA). Changes in the pericellular matrix (PCM) surrounding chondrocytes may be early indicators of OA.
View Article and Find Full Text PDFAdaptations in brain communication are associated with multiple pain disorders and are hypothesized to promote the transition from acute to chronic pain. Despite known increases in brain synaptic activity, it is unknown if and how changes in pathways and networks contribute to persistent pain. A tunable rat model that induces transient or persistent temporomandibular joint pain was used to characterize brain network and subcircuit changes when sensitivity is detected in both transient and persistent pain groups and later when sensitivity is present only for the persistent pain group.
View Article and Find Full Text PDFBackground: It is hypothesized that inherent differences in movement strategies exist between control subjects and those with a history of lower back pain (LBP). Previous motion analysis studies focus primarily on tracking spinal movements, neglecting the connection between the lower limbs and spinal function. Lack of knowledge surrounding the functional implications of LBP may explain the diversity in success from general treatments currently offered to LBP patients.
View Article and Find Full Text PDFInter-subject networks are used to model correlations between brain regions and are particularly useful for metabolic imaging techniques, like 18F-2-deoxy-2-(18F)fluoro-D-glucose (FDG) positron emission tomography (PET). Since FDG PET typically produces a single image, correlations cannot be calculated over time. Little focus has been placed on the basic properties of inter-subject networks and if they are affected by group size and image normalization.
View Article and Find Full Text PDFThe London Underground is one of the largest, oldest and most widely used systems of public transit in the world. Transportation in London is constantly challenged to expand and adapt its system to meet the changing requirements of London's populace while maintaining a cost-effective and efficient network. Previous studies have described this system using concepts from graph theory, reporting network diagnostics and core-periphery architecture.
View Article and Find Full Text PDFChronic joint pain is a widespread problem that frequently occurs with aging and trauma. Pain occurs most often in synovial joints, the body's load bearing joints. The mechanical and molecular mechanisms contributing to synovial joint pain are reviewed using two examples, the cervical spinal facet joints and the temporomandibular joint (TMJ).
View Article and Find Full Text PDF