Publications by authors named "Megan M Greenlee"

Many hormonal pathways contribute to the regulation of renal epithelial sodium channel (ENaC) function, a key process for maintaining blood volume and controlling blood pressure. In the present study, we examined whether the peptide hormone prolactin (PRL) regulates ENaC function in renal epithelial cells (A6). Basolateral application of several different concentrations of PRL dramatically stimulated the transepithelial current in A6 cells, increasing both amiloride-sensitive (ENaC) and amiloride-insensitive currents.

View Article and Find Full Text PDF

Female sex predisposes individuals to poorer outcomes during respiratory disorders like cystic fibrosis and influenza-associated pneumonia. A common link between these disorders is dysregulation of alveolar fluid clearance via disruption of epithelial sodium channel (ENaC) activity. Recent evidence suggests that female sex hormones directly regulate expression and activity of alveolar ENaC.

View Article and Find Full Text PDF

A consistent clinical finding in patients with major depressive disorder (MDD) is hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis, the system in the body that facilitates the response to stress. It has been suggested that alterations in glucocorticoid receptor (GR)-mediated feedback prolong activation of the HPA axis, leading to the dysfunction observed in MDD. Additionally, the risk for developing MDD is heightened by several risk factors, namely gender, genetics and early life stress.

View Article and Find Full Text PDF

Increasing evidence suggests that the circadian clock plays an important role in the control of renal function and blood pressure. We previously showed that the circadian clock protein Period (Per)1, positively regulates the expression of the rate limiting subunit of the renal epithelial sodium channel (αENaC), which contributes to blood pressure regulation. Casein kinases 1δ and 1ε (CK1δ/ε) are critical regulators of clock proteins.

View Article and Find Full Text PDF

The circadian clock protein period 1 (Per1) contributes to the regulation of expression of the α subunit of the renal epithelial sodium channel at the basal level and in response to the mineralocorticoid hormone aldosterone. The goals of the present study were to define the role of Per1 in the regulation of additional renal sodium handling genes in cortical collecting duct cells and to evaluate blood pressure (BP) in mice lacking functional Per1. To determine whether Per1 regulates additional genes important in renal sodium handling, a candidate gene approach was used.

View Article and Find Full Text PDF

The adrenal cortex synthesizes many steroids, but the mineralocorticoid aldosterone and the glucocorticoids cortisol and corticosteroid have been viewed as the principal steroids responsible for regulation of renal electrolyte excretion. A study by Elabida et al. challenges that paradigm and suggests that progesterone, classically viewed as a sex steroid, also participates in renal electrolyte balance.

View Article and Find Full Text PDF

In the renal collecting duct, mineralocorticoids drive Na(+) reabsorption, K(+) secretion, and H(+) secretion through coordinated actions on apical and basolateral transporters. Whether mineralocorticoids act through H(+),K(+)-ATPases to maintain K(+) and acid-base homeostasis is unknown. Here, treatment of mice with the mineralocorticoid desoxycorticosterone pivalate (DOCP) resulted in weight gain, a decrease in blood [K(+)] and [Cl(-)], and an increase in blood [Na(+)] and [HCO(3)(-)].

View Article and Find Full Text PDF

The epithelial sodium channel (ENaC) mediates the fine-tuned regulation of external sodium (Na) balance. The circadian clock protein Period 1 (Per1) is an aldosterone-induced gene that regulates mRNA expression of the rate-limiting alpha subunit of ENaC (αENaC). In the present study, we examined the effect of Per1 on αENaC in the cortex, the site of greatest ENaC activity in the collecting duct, and examined the mechanism of Per1 action on αENaC.

View Article and Find Full Text PDF

Purpose Of Review: We integrate recent evidence that demonstrates the importance of the gastric (HKalpha1) and nongastric (HKalpha2)-containing hydrogen potassium adenosine triphosphatases (H,K-ATPases) on physiological function and their role in potassium (K), sodium (Na), and acid-base balance.

Recent Findings: Previous studies focused on the primary role of H,K-ATPases as a mechanism of K conservation during states of K deprivation. Both isoforms function in H secretion and K absorption in vivo during K deprivation, but recent findings show that these pumps also function in acid secretion in animals fed normal K-replete diets.

View Article and Find Full Text PDF

In the collecting duct (CD), H-K-ATPases function in cation reabsorption and H secretion. This study evaluated H-K-ATPase-mediated H secretion along the mouse CD, measured as EIPA- and luminal bafilomycin A(1)-insensitive intracellular pH (pH(i)) recovery from acute H loading (NH(4)) using BCECF. pH(i) recovery was measured in 1) microperfused cortical, outer medullary, and inner medullary CDs (CCD, OMCD, and IMCD) from C57BL/6J mice fed a normal diet and 2) common murine CD cell lines.

View Article and Find Full Text PDF

The H(+)-K(+)-ATPases are ion pumps that use the energy of ATP hydrolysis to transport protons (H(+)) in exchange for potassium ions (K(+)). These enzymes consist of a catalytic alpha-subunit and a regulatory beta-subunit. There are two catalytic subunits present in the kidney, the gastric or HKalpha(1) isoform and the colonic or HKalpha(2) isoform.

View Article and Find Full Text PDF

Aldosterone and endothelin-1 (ET-1) act on collecting duct cells of the kidney and are important regulators of renal sodium transport and cardiovascular physiology. We recently identified the ET-1 gene (edn1) as a novel aldosterone-induced transcript. However, aldosterone action on edn1 has not been characterized at the present time.

View Article and Find Full Text PDF

The mineralocorticoid aldosterone is a major regulator of sodium transport in target epithelia and contributes to the control of blood pressure and cardiac function. It specifically functions to increase renal absorption of sodium from tubular fluid via regulation of the alpha subunit of the epithelial sodium channel (alphaENaC). We previously used microarray technology to identify the immediate transcriptional targets of aldosterone in a mouse inner medullary collecting duct cell line and found that the transcript induced to the greatest extent was the circadian clock gene Period 1.

View Article and Find Full Text PDF