Publications by authors named "Megan M Coffer"

Eutrophication of inland lakes poses various societal and ecological threats, making water quality monitoring crucial. Satellites provide a comprehensive and cost-effective supplement to traditional in situ sampling. The Sentinel-2 MultiSpectral Instrument (S2 MSI) offers unique spectral bands positioned to quantify chlorophyll , a water-quality and trophic-state indicator, along with fine spatial resolution, enabling the monitoring of small waterbodies.

View Article and Find Full Text PDF

Water clarity serves as both an indicator and a regulator of biological function in aquatic systems. Large-scale, consistent water clarity monitoring is needed for informed decision-making. Inland freshwater ponds and lakes across Cape Cod, a 100-km peninsula in Massachusetts, are of particular interest for water clarity monitoring.

View Article and Find Full Text PDF

Seagrasses are globally recognized for their contribution to blue carbon sequestration. However, accurate quantification of their carbon storage capacity remains uncertain due, in part, to an incomplete inventory of global seagrass extent and assessment of its temporal variability. Furthermore, seagrasses are undergoing significant decline globally, which highlights the urgent need to develop change detection techniques applicable to both the scale of loss and the spatial complexity of coastal environments.

View Article and Find Full Text PDF

Seagrasses have been widely recognized for their ecosystem services, but traditional seagrass monitoring approaches emphasizing ground and aerial observations are costly, time-consuming, and lack standardization across datasets. This study leveraged satellite imagery from Maxar's WorldView-2 and WorldView-3 high spatial resolution, commercial satellite platforms to provide a consistent classification approach for monitoring seagrass at eleven study areas across the continental United States, representing geographically, ecologically, and climatically diverse regions. A single satellite image was selected at each of the eleven study areas to correspond temporally to reference data representing seagrass coverage and was classified into four general classes: land, seagrass, no seagrass, and no data.

View Article and Find Full Text PDF

Seagrass meadows are degraded globally and continue to decline in areal extent due to human pressures and climate change. This study used the bio-optical model GrassLight to explore the impact of climate change and anthropogenic stressors on seagrass extent, leaf area index (LAI) and belowground organic carbon (BGC) in St. Joseph Bay, Florida, using water quality data and remotely-sensed sea surface temperature (SST) from 2002 to 2020.

View Article and Find Full Text PDF

Satellite image artefacts are features that appear in an image but not in the original imaged object and can negatively impact the interpretation of satellite data. Vertical artefacts are linear features oriented in the along-track direction of an image system and can present as either banding or striping; banding are features with a consistent width, and striping are features with inconsistent widths. This study used high-resolution data from DigitalGlobe's (now Maxar) WorldView-3 satellite collected at Lake Okeechobee, Florida (FL), on 30 August 2017.

View Article and Find Full Text PDF

Cyanobacterial blooms can have negative effects on human health and local ecosystems. Field monitoring of cyanobacterial blooms can be costly, but satellite remote sensing has shown utility for more efficient spatial and temporal monitoring across the United States. Here, satellite imagery was used to assess the annual frequency of surface cyanobacterial blooms, defined for each satellite pixel as the percentage of images for that pixel throughout the year exhibiting detectable cyanobacteria.

View Article and Find Full Text PDF

Satellite remote sensing offers an effective remedy to challenges in ground-based and aerial mapping that have previously impeded quantitative assessments of global seagrass extent. Commercial satellite platforms offer fine spatial resolution, an important consideration in patchy seagrass ecosystems. Currently, no consistent protocol exists for image processing of commercial data, limiting reproducibility and comparison across space and time.

View Article and Find Full Text PDF

Background: The occurrence of cyanobacterial blooms in freshwater presents a threat to human health. However, epidemiological studies on the association between cyanobacterial blooms in drinking water sources and human health outcomes are scarce. The objective of this study was to evaluate if cyanobacterial blooms were associated with increased emergency room visits for gastrointestinal (GI), respiratory and dermal illnesses.

View Article and Find Full Text PDF

This study presents the first large-scale assessment of cyanobacterial frequency and abundance of surface water near drinking water intakes across the United States. Public water systems serve drinking water to nearly 90% of the United States population. Cyanobacteria and their toxins may degrade the quality of finished drinking water and can lead to negative health consequences.

View Article and Find Full Text PDF

Cyanobacterial harmful algal blooms are the most common form of harmful algal blooms in freshwater systems throughout the world. However, sampling of cyanobacteria in inland lakes is limited both spatially and temporally. Satellite data has proven to be an effective tool to monitor cyanobacteria in freshwater lakes across the United States.

View Article and Find Full Text PDF