Environ Sci Technol
July 2022
The Amazon rainforest suffers increasing pressure from anthropogenic activities. A key aspect not fully understood is how anthropogenic atmospheric emissions within the basin interact with biogenic emissions and impact the forest's atmosphere and biosphere. We combine a high-resolution atmospheric chemical transport model with an improved emissions inventory and in-situ measurements to investigate a surprisingly high concentration of ozone (O) and secondary organic aerosol (SOA) 150-200 km downwind of Manaus city in an otherwise pristine forested region.
View Article and Find Full Text PDFCarbonaceous emissions from wildfires are a dynamic mixture of gases and particles that have important impacts on air quality and climate. Emissions that feed atmospheric models are estimated using burned area and fire radiative power (FRP) methods that rely on satellite products. These approaches show wide variability and have large uncertainties, and their accuracy is challenging to evaluate due to limited aircraft and ground measurements.
View Article and Find Full Text PDFDeep convective transport of gaseous precursors to ozone (O) and aerosols to the upper troposphere is affected by liquid phase and mixed-phase scavenging, entrainment of free tropospheric air and aqueous chemistry. The contributions of these processes are examined using aircraft measurements obtained in storm inflow and outflow during the 2012 Deep Convective Clouds and Chemistry (DC3) experiment combined with high-resolution (d ≤ 3 km) WRF-Chem simulations of a severe storm, an air mass storm, and a mesoscale convective system (MCS). The simulation results for the MCS suggest that formaldehyde (CHO) is not retained in ice when cloud water freezes, in agreement with previous studies of the severe storm.
View Article and Find Full Text PDF