Publications by authors named "Megan Lynn"

Glucocorticoid receptor (GR) function may have aetiopathogenic significance in chronic fatigue syndrome (CFS), via its essential role in mediating inflammatory responses as well as in hypothalamic-pituitary-adrenal axis regulation. GR function can be estimated ex vivo by measuring dexamethasone (dex) modulation of cytokine response to lipopolysaccharide (LPS), and using the impact of dex on cortisol levels. This study aimed to compare the GR function between CFS ( = 48), primary Sjögren's syndrome (a disease group control) ( = 27), and sedentary healthy controls (HCs) ( = 20), and to investigate its relationship with clinical measures.

View Article and Find Full Text PDF

Retinoic Acid (RA) is a small lipophilic signaling molecule essential for embryonic development and adult tissue maintenance. Both an excess of RA and a deficiency of RA can cause pathogenic anomalies, hence it is critical to understand the mechanisms controlling the spatial and temporal distribution of RA. However, our current understanding of these processes remains incomplete.

View Article and Find Full Text PDF

Proper craniofacial development begins during gastrulation and requires the coordinated integration of each germ layer tissue (ectoderm, mesoderm, and endoderm) and its derivatives in concert with the precise regulation of cell proliferation, migration, and differentiation. Neural crest cells, which are derived from ectoderm, are a migratory progenitor cell population that generates most of the cartilage, bone, and connective tissue of the head and face. Neural crest cell development is regulated by a combination of intrinsic cell autonomous signals acquired during their formation, balanced with extrinsic signals from tissues with which the neural crest cells interact during their migration and differentiation.

View Article and Find Full Text PDF

The clinical faculty at the University of Maryland School of Nursing recognized that many students in the adult health course were struggling in the clinical environment. The faculty had access to a remediation program that was self-directed and did not provide individualized instruction. The limitations of the remediation program prompted a redesign that focused on a student-centered approach.

View Article and Find Full Text PDF

Treacher Collins syndrome (TCS) is a congenital disorder of craniofacial development arising from mutations in TCOF1, which encodes the nucleolar phosphoprotein Treacle. Haploinsufficiency of Tcof1 perturbs mature ribosome biogenesis, resulting in stabilization of p53 and the cyclin G1-mediated cell-cycle arrest that underpins the specificity of neuroepithelial apoptosis and neural crest cell hypoplasia characteristic of TCS. Here we show that inhibition of p53 prevents cyclin G1-driven apoptotic elimination of neural crest cells while rescuing the craniofacial abnormalities associated with mutations in Tcof1 and extending life span.

View Article and Find Full Text PDF