Microfluidic devices support developmental and mechanobiology studies by enabling the precise control of electrical, chemical, and mechanical stimuli at the microscale. Here, we describe the fabrication of customizable microfluidic devices and demonstrate their efficacy in applying mechanical loads to micro-organs and whole organisms, such as Drosophila embryos. The fabrication technique consists in the use of xurography to define channels and chambers using thin layers of thermoplastics and glass.
View Article and Find Full Text PDFMechanosensitive Piezo channels regulate cell division, cell extrusion, and cell death. However, systems-level functions of Piezo in regulating organogenesis remain poorly understood. Here, we demonstrate that Piezo controls epithelial cell topology to ensure precise organ growth by integrating live-imaging experiments with pharmacological and genetic perturbations and computational modeling.
View Article and Find Full Text PDFEpithelial sheets define organ architecture during development. Here, we employed an iterative multiscale computational modeling and quantitative experimental approach to decouple direct and indirect effects of actomyosin-generated forces, nuclear positioning, extracellular matrix, and cell-cell adhesion in shaping Drosophila wing imaginal discs. Basally generated actomyosin forces generate epithelial bending of the wing disc pouch.
View Article and Find Full Text PDFMicrofluidic devices allow for the manipulation of fluids, particles, cells, micro-sized organs or organisms in channels ranging from the nano to submillimeter scales. A rapid increase in the use of this technology in the biological sciences has prompted a need for methods that are accessible to a wide range of research groups. Current fabrication standards, such as PDMS bonding, require expensive and time consuming lithographic and bonding techniques.
View Article and Find Full Text PDFRanging from miniaturized biological robots to organoids, multi-cellular engineered living systems (M-CELS) pose complex ethical and societal challenges. Some of these challenges, such as how to best distribute risks and benefits, are likely to arise in the development of any new technology. Other challenges arise specifically because of the particular characteristics of M-CELS.
View Article and Find Full Text PDFMicrofluidic devices provide a platform for analyzing both natural and synthetic multicellular systems. Currently, substantial capital investment and expertise are required for creating microfluidic devices using standard soft-lithography. These requirements present barriers to entry for many nontraditional users of microfluidics, including developmental biology laboratories.
View Article and Find Full Text PDFThe robust specification of organ development depends on coordinated cell-cell communication. This process requires signal integration among multiple pathways, relying on second messengers such as calcium ions. Calcium signaling encodes a significant portion of the cellular state by regulating transcription factors, enzymes, and cytoskeletal proteins.
View Article and Find Full Text PDF