Publications by authors named "Megan L Rexius-Hall"

Disrupted blood flow in conditions such as peripheral artery disease and critical limb ischemia leads to variations in oxygen supply within skeletal muscle tissue, creating regions of poorly perfused, hypoxic skeletal muscle surrounded by regions of adequately perfused, normoxic muscle tissue. These oxygen gradients may have significant implications for muscle injury or disease, as mediated by the exchange of paracrine factors between differentially oxygenated tissue. However, creating and maintaining heterogeneous oxygen landscapes within a controlled experimental setup to ensure continuous paracrine signaling is a technological challenge.

View Article and Find Full Text PDF

Myocardial infarction (MI) causes hypoxic injury to downstream myocardial tissue, which initiates a wound healing response that replaces injured myocardial tissue with a scar. Wound healing is a complex process that consists of multiple phases, in which many different stimuli induce cardiac fibroblasts to differentiate into myofibroblasts and deposit new matrix. While this process is necessary to replace necrotic tissue, excessive and unresolved fibrosis is common post-MI and correlated with heart failure.

View Article and Find Full Text PDF

Myocardial infarctions locally deprive myocardium of oxygenated blood and cause immediate cardiac myocyte necrosis. Irreparable myocardium is then replaced with a scar through a dynamic repair process that is an interplay between hypoxic cells of the infarct zone and normoxic cells of adjacent healthy myocardium. In many cases, unresolved inflammation or fibrosis occurs for reasons that are incompletely understood, increasing the risk of heart failure.

View Article and Find Full Text PDF

After a myocardial infarction, the boundary between the injured, hypoxic tissue and the adjacent viable, normoxic tissue, known as the border zone, is characterized by an oxygen gradient. Yet, the impact of an oxygen gradient on cardiac tissue function is poorly understood, largely due to limitations of existing experimental models. Here, we engineered a microphysiological system to controllably expose engineered cardiac tissue to an oxygen gradient that mimics the border zone and measured the effects of the gradient on electromechanical function and the transcriptome.

View Article and Find Full Text PDF

Controlled electrical stimulation is essential for evaluating the physiology of cardiac tissues engineered in heart-on-a-chip devices. However, existing stimulation techniques, such as external platinum electrodes or opaque microelectrode arrays patterned on glass substrates, have limited throughput, reproducibility, or compatibility with other desirable features of heart-on-a-chip systems, such as the use of tunable culture substrates, imaging accessibility, or enclosure in a microfluidic device. In this study, indium tin oxide (ITO), a conductive, semi-transparent, and biocompatible material, was deposited onto glass and polydimethylsiloxane (PDMS)-coated coverslips as parallel or point stimulation electrodes using laser-cut tape masks.

View Article and Find Full Text PDF

In vitro models that recapitulate key aspects of native tissue architecture and the physical microenvironment are emerging systems for modeling development and disease. For example, the myocardium consists of layers of aligned and coupled cardiac myocytes that are interspersed with supporting cells and embedded in a compliant extracellular matrix (ECM). These cell-cell and cell-matrix interactions are known to be important regulators of tissue physiology and pathophysiology.

View Article and Find Full Text PDF

In skeletal muscle fibers, mitochondria are densely packed adjacent to myofibrils because adenosine triphosphate (ATP) is needed to fuel sarcomere shortening. However, despite this close physical and biochemical relationship, the effects of mitochondrial dynamics on skeletal muscle contractility are poorly understood. In this study, we analyzed the effects of Mitochondrial Division Inhibitor 1 (mdivi-1), an inhibitor of mitochondrial fission, on the structure and function of both mitochondria and myofibrils in skeletal muscle tissues engineered on micromolded gelatin hydrogels.

View Article and Find Full Text PDF

The molecular mechanisms underlying the metabolic shift toward increased glycolysis observed in pulmonary artery smooth muscle cells (PASMC) during the pathogenesis of pulmonary arterial hypertension (PAH) are not fully understood. Here we show that the glycolytic enzyme α-enolase (ENO1) regulates the metabolic reprogramming and malignant phenotype of PASMC. We show that ENO1 levels are elevated in patients with associated PAH and in animal models of hypoxic pulmonary hypertension (HPH).

View Article and Find Full Text PDF

Gas-perfused microchannels generated a linear oxygen gradient via diffusion across a 100 μm polydimethylsiloxane (PDMS) membrane. The device enabled exposure of a single monolayer of cells sharing culture media to a heterogeneous oxygen landscape, thus reflecting the oxygen gradients found at the microscale in the physiological setting and allowing for the real-time exchange of paracrine factors and metabolites between cells exposed to varying oxygen levels. By tuning the distance between two gas supply channels, the slope of the oxygen gradient was controlled.

View Article and Find Full Text PDF

3D printing has emerged as a method for directly printing complete microfluidic devices, although printing materials have been limited to oxygen-impermeable materials. We demonstrate the addition of gas permeable PDMS (Polydimethylsiloxane) membranes to 3D-printed microfluidic devices as a means to enable oxygen control cell culture studies. The incorporation of a 3D-printed device and gas-permeable membranes was demonstrated on a 24-well oxygen control device for standard multiwell plates.

View Article and Find Full Text PDF

An open-well microfluidic platform generates an oxygen landscape using gas-perfused networks which diffuse across a membrane. The device enables real-time analysis of cellular and tissue responses to oxygen tension to define how cells adapt to heterogeneous oxygen conditions found in the physiological setting. We demonstrate that localized hypoxic activation of cells elicited specific metabolic and gene responses in human microvascular endothelial cells and bone marrow-derived mesenchymal stem cells.

View Article and Find Full Text PDF

Cellular function and behavior are affected by the partial pressure of O2, or oxygen tension, in the microenvironment. The level of oxygenation is important, as it is a balance of oxygen availability and oxygen consumption that is necessary to maintain normoxia. Changes in oxygen tension, from above physiological oxygen tension (hyperoxia) to below physiological levels (hypoxia) or even complete absence of oxygen (anoxia), trigger potent biological responses.

View Article and Find Full Text PDF