Proteins from organisms that have adapted to environmental extremes provide attractive systems to explore and determine the origins of protein stability. Improved hydrophobic core packing and decreased loop-length flexibility can increase the thermodynamic stability of proteins from hyperthermophilic organisms. However, their impact on protein mechanical stability is not known.
View Article and Find Full Text PDFOne of the most exciting developments in the field of biological physics in recent years is the ability to manipulate single molecules and probe their properties and function. Since its emergence over two decades ago, single molecule force spectroscopy has become a powerful tool to explore the response of biological molecules, including proteins, DNA, RNA and their complexes, to the application of an applied force. The force versus extension response of molecules can provide valuable insight into its mechanical stability, as well as details of the underlying energy landscape.
View Article and Find Full Text PDFExtremophiles are organisms which survive and thrive in extreme environments. The proteins from extremophilic single-celled organisms have received considerable attention as they are structurally stable and functionally active under extreme physical and chemical conditions. In this short article, we provide an introduction to extremophiles, the structural adaptations of proteins from extremophilic organisms and the exploitation of these proteins in industrial applications.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
January 2015
Single-molecule force spectroscopy using an atomic force microscope (AFM) can be used to measure the average unfolding force of proteins in a constant velocity experiment. In combination with Monte Carlo simulations and through the application of the Zhurkov-Bell model, information about the parameters describing the underlying unfolding energy landscape of the protein can be obtained. Using this approach, we have completed protein unfolding experiments on the polyprotein (I27)(5) over a range of pulling velocities.
View Article and Find Full Text PDFThe successful integration of proteins into bionanomaterials with specific and desired functions requires an accurate understanding of their material properties. Two such important properties are their mechanical stability and malleability. While single molecule manipulation techniques now routinely provide access to these, there is a need to move towards predictive tools that can rationally identify proteins with desired material properties.
View Article and Find Full Text PDF