and total coliforms are important tools for identifying potential faecal contamination in drinking water. However, metagenomics offers a powerful approach for delving deeper into a bacterial community when or total coliforms are detected. Metagenomics can identify microbes native to water systems, track community changes and potential pathogens introduced by contamination events, and evaluate the effectiveness of treatment processes.
View Article and Find Full Text PDFEscherichia coli are widely used by water quality managers as Fecal Indicator Bacteria, but current quantification methods do not differentiate them from benign, environmental Escherichia species such as E. marmotae (formerly named cryptic clade V) or E. ruysiae (cryptic clades III and IV).
View Article and Find Full Text PDF(1) Background: This paper discusses the impact of agricultural activities on stream health, particularly in relation to dairy cow fecal pollution. The study explores the fecal microbiome of cattle and the potential ecological implications of aging fecal pollution on waterways. (2) Methods: The study examines changes in the bacterial community available for mobilization from in-situ decomposing cowpats and the effects of simulated rainfall.
View Article and Find Full Text PDFIn tropical to temperate environments, fecal indicator bacteria (FIB), such as enterococci and Escherichia coli, can persist and potentially multiply, far removed from their natural reservoir of the animal gut. FIB isolated from environmental reservoirs such as stream sediments, beach sand and vegetation have been termed "naturalized" FIB. In addition, recent research suggests that the intestines of poikilothermic animals such as fish may be colonized by enterococci and E.
View Article and Find Full Text PDFThis study explores the relationships between faecal source tracking (FST) markers (quantitative Polymerase Chain Reaction (qPCR) markers and steroids), microbial indicators, the faecal ageing ratio of atypical colonies/total coliforms (AC/TC) and potential human pathogens (Giardia, Cryptosporidium and Campylobacter). Faecal source PCR markers tested were GenBac3, HumM3, HumBac (HF183-Bac708R); Bifidobacterium adolescentis, wildfowl and canine-associated markers. Sediment and water samples from the Avon River were collected during and post-discharge of untreated human sewage inputs, following a series of earthquakes, which severely damaged the Christchurch sewerage system.
View Article and Find Full Text PDFIn New Zealand, there is substantial potential for microbial contaminants from agricultural fecal sources to be transported into waterways. The flow and transport pathways for fecal contaminants vary at a range of scales and is dependent on chemical, physical and biological attributes of pathways, soils, microorganisms and landscape characteristics. Understanding contaminant transport pathways from catchment to stream can aid water management strategies.
View Article and Find Full Text PDFEnviron Monit Assess
October 2015
Discrimination of the source of faecal pollution in water bodies is an important step in the assessment and mitigation of public health risk. One tool for faecal source tracking is the analysis of faecal sterols which are present in faeces of animals in a range of distinctive ratios. Published ratios are able to discriminate between human and herbivore mammal faecal inputs but are of less value for identifying pollution from wildfowl, which can be a common cause of elevated bacterial indicators in rivers and streams.
View Article and Find Full Text PDFA series of large earthquakes struck the city of Christchurch, New Zealand in 2010-2011. Major damage sustained by the sewerage infrastructure required direct discharge of up to 38,000 m(3)/day of raw sewage into the Avon River of Christchurch for approximately six months. This allowed evaluation of the relationship between concentrations of indicator microorganisms (Escherichia coli, Clostridium perfringens and F-RNA phage) and pathogens (Campylobacter, Giardia and Cryptosporidium) in recreational water and sediment both during and post-cessation of sewage discharges.
View Article and Find Full Text PDFDetection of the faecal pollution contribution from wildfowl is an important adjunct in determining the sources of faecal pollution in waterways. This is particularly true, where human waste and other animal faecal sources have been eliminated as the pollution source. A polymerase chain reaction (PCR) marker was developed as a duck-specific marker of faecal pollution.
View Article and Find Full Text PDF