Innovation in the application and miniaturization of implantable electrodes has caused a spike in new electrode material research; however, few robust studies are available that compare different metal electrodes in biologically relevant media. Herein, cyclic voltammetry has been employed to compare platinum, palladium, and gold-based electrodes' potentiometric scans and their corresponding charge storage capacities (CSCs). Ten different noble metals and alloys in these families were tested under pseudophysiological conditions in phosphate-buffered saline (pH 7.
View Article and Find Full Text PDFSimultaneous exfoliation of crystalline α-zirconium phosphate (α-ZrP) nanosheets and enzyme binding, induced by shearing, without the addition of any toxic additives is reported here for the first time. These materials were thoroughly characterized and used for applications. The bulk α-ZrP material (20 mg mL) was exfoliated with low concentrations of a protein such as bovine serum albumin (BSA, 3 mg mL) in a shear reactor at 10k rpm for <80 minutes.
View Article and Find Full Text PDFIn this chapter, we report a simple and facile method to armor enzymes with carbon nanotubes (CNTs) which are exfoliated, and debundled using bovine serum albumin (BSA). The fabricated CNT/BSA dispersions are biofriendly, biocompatible, defect-free, and highly stable solutions. BSA gives maximum exfoliation efficiency, exceeding the 4mg/mL of CNT concentration compared to any previous reports.
View Article and Find Full Text PDFA simple method to produce record concentrations (up to 10 mg mL) of high-quality aqueous graphene suspensions by using an ordinary benchtop magnetic stirrer is reported. The shear rates employed here are almost 10 times less than those in previous reports, and graphene is efficiently separated from unexfoliated graphite during the synthesis. Systematic optimization of synthesis parameters, such as pH, protein concentration, temperature, stirrer speed, and volume of solution, afforded efficient conversion (100%) of graphite to graphene-aqueous suspensions.
View Article and Find Full Text PDFA better understanding of the enzyme-nanosheet interface is imperative for the design of functional, robust inorganic nanobiomaterials and biodevices, now more than ever, for use in a broad spectrum of applications. This feature article discusses recent advances in controlling the enzyme-nanosheet interface with regards to α-zirconium(iv) phosphate (α-ZrP), graphene oxide (GO), graphene, and MoS nanosheets. Specific focus will be placed on understanding the mechanisms with which these materials interact with enzymes and elaborate on particular ways to engineer and control these interactions.
View Article and Find Full Text PDFThe unique properties of graphene make it an intriguing platform for the attachment and enhancement of biological molecules, but it has yet to achieve its full potential in terms of biological applications. Single-layer graphene is expensive, making alternatives to this material highly desired for applications that require high-quality graphene in large quantities. In this context, we report a simple, environmentally friendly, nonlabor-intensive method for the synthesis of colloidal graphene suspensions of 3-5 layers, stabilized by bovine serum albumin, in water.
View Article and Find Full Text PDFA simple method for interlocking glucose oxidase and horseradish peroxidase in a network of cellulose fibers coated with bovine serum albumin (BSA)-exfoliated graphene (biographene) is reported here. The resulting paper reactor is inexpensive and stable. Biographene is expected to function as an electron shuttle, making the reaction between the enzyme and the substrate more efficient, and this hypothesis is examined here.
View Article and Find Full Text PDF