Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by accumulation of extracellular amyloid beta (Aβ) and intracellular neurofibrillary tangles, leading to chronic activation of astrocytes and microglia and persistent neuroinflammation. Aβ-linked activation of microglia and astrocytes leads to increased intracellular calcium and production of proinflammatory cytokines, impacting the progression of neurodegeneration. An N-terminal Aβ fragment (Aβ) and a shorter hexapeptide core sequence within the N-Aβ fragment (N-Aβcore: Aβ) have previously been shown to protect against Aβ-induced mitochondrial dysfunction, oxidative stress and apoptosis in neurons and rescue synaptic and spatial memory deficits in an APP/PSEN1 mouse model.
View Article and Find Full Text PDFNeuroinflammation contributes to the pathogenesis of several neurodegenerative disorders. Glycogen synthase kinase-3β (GSK-3β) regulates the release of proinflammatory cytokines and promotes inflammatory responses in immune cells. Microglia are the resident mononuclear immune cells of the central nervous system.
View Article and Find Full Text PDFUnderstanding the specific gene changes underlying the prodromic stages of Alzheimer's disease pathogenesis will aid the development of new, targeted therapeutic strategies for this neurodegenerative disorder. Here, we employed RNA-sequencing to analyze global differential gene expression in a defined model nerve cell line expressing α4β2 nicotinic receptors (nAChRs), high-affinity targets for beta amyloid (Aβ). The nAChR-expressing neuronal cells were treated with nanomolar Aβ to gain insights into the molecular mechanisms underlying Aβ-induced neurotoxicity in the presence of this sensitizing target receptor.
View Article and Find Full Text PDF