Fecal microbiota transplantation has been vital for establishing whether host phenotypes can be conferred through the microbiome. However, whether the existing microbial ecology along the mouse gastrointestinal tract can be recapitulated in germ-free mice colonized with stool remains unknown. We first identified microbes and their predicted functions specific to each of six intestinal regions in three cohorts of specific pathogen-free mice spanning two facilities.
View Article and Find Full Text PDFColorectal cancer (CRC) is associated with alterations of the fecal and tissue-associated microbiome. Preclinical models support a pathogenic role of the microbiome in CRC, including in promoting metastasis and modulating antitumor immune responses. To investigate whether the microbiome is associated with lymph node metastasis and T cell infiltration in human CRC, we performed 16S rRNA gene sequencing of feces, tumor core, tumor surface, and healthy adjacent tissue collected from 34 CRC patients undergoing surgery (28 fecal samples and 39 tissue samples).
View Article and Find Full Text PDFBackground: Irritable bowel syndrome (IBS) is a common gastrointestinal disorder that is thought to involve alterations in the gut microbiome, but robust microbial signatures have been challenging to identify. As prior studies have primarily focused on composition, we hypothesized that multi-omics assessment of microbial function incorporating both metatranscriptomics and metabolomics would further delineate microbial profiles of IBS and its subtypes.
Methods: Fecal samples were collected from a racially/ethnically diverse cohort of 495 subjects, including 318 IBS patients and 177 healthy controls, for analysis by 16S rRNA gene sequencing (n = 486), metatranscriptomics (n = 327), and untargeted metabolomics (n = 368).