Publications by authors named "Megan Haney"

The larynx is an essential organ in mammals with three primary functions - breathing, swallowing, and vocalizing. A wide range of disorders are known to impair laryngeal function, which results in difficulty breathing (dyspnea), swallowing impairment (dysphagia), and/or voice impairment (dysphonia). Dysphagia, in particular, can lead to aspiration pneumonia and associated morbidity, recurrent hospitalization, and early mortality.

View Article and Find Full Text PDF

Background: Since the origin of the C57BL/6 (B6) mouse strain, several phenotypically and genetically distinct B6 substrains have emerged. For example, C57BL/6J mice (B6J) display greater voluntary ethanol consumption and locomotor response to psychostimulants and differences in nucleus accumbens synaptic physiology relative to C57BL/6N (B6N) mice. A non-synonymous serine to phenylalanine point mutation (S968F) in the cytoplasmic FMR1-interacting protein 2 (Cyfip2) gene underlies both the differential locomotor response to cocaine and the accumbal physiology exhibited by these substrains.

View Article and Find Full Text PDF

Background: In alcohol-dependent individuals, acute alcohol withdrawal results in severe physiological disruption, including potentially lethal central nervous system hyperexcitability. Although benzodiazepines successfully mitigate such symptoms, this treatment does not significantly reduce recidivism rates in postdependent individuals. Instead, persistent affective disturbances that often emerge weeks to months after initial detoxification appear to play a significant role in relapse risk; however, it remains unclear whether genetic predispositions contribute to their emergence, severity, and/or duration.

View Article and Find Full Text PDF

The recurrent laryngeal nerve (RLN) is responsible for normal vocal-fold (VF) movement, and is at risk for iatrogenic injury during anterior neck surgical procedures in human patients. Injury, resulting in VF paralysis, may contribute to subsequent swallowing, voice, and respiratory dysfunction. Unfortunately, treatment for RLN injury does little to restore physiologic function of the VFs.

View Article and Find Full Text PDF

Iatrogenic recurrent laryngeal nerve (RLN) injury is a morbid complication of anterior neck surgical procedures. Existing treatments are predominantly symptomatic, ranging from behavioral therapy to a variety of surgical approaches. Though laryngeal reinnervation strategies often provide muscle tone to the paralyzed vocal fold (VF), which may improve outcomes, there is no clinical intervention that reliably restores true physiologic VF movement.

View Article and Find Full Text PDF

Background: While the acute alcohol withdrawal syndrome has been well characterized both in human clinical studies and in experimental animals, much less is known regarding long-term affective disturbances that can sometimes persist during protracted abstinence. Nevertheless, since relapse often occurs long after acute detoxification and may be predicted by persistent affective disruption, a better understanding of the long-term behavioral consequences of prior alcohol dependence may lead to improved strategies for relapse prevention.

Methods: Male and female Withdrawal Seizure-Prone and Withdrawal Seizure-Resistant mice from the second selection replicate (WSP-2, WSR-2) were exposed to a 10-day chronic-intermittent ethanol vapor protocol (CIE) or plain air and then tested repeatedly on the sucrose preference test (SPT), marble burying test (MBT), and the light-dark box test (LDT) over 7 weeks of (forced) abstinence.

View Article and Find Full Text PDF
Article Synopsis
  • The study focused on how serotonin (5-HT) affects swallowing by using mice lacking the enzyme needed for 5-HT production.
  • TPH2 knockout mice displayed significant changes in swallowing, including slower licking and swallowing rates and quicker esophageal transit times compared to normal mice.
  • Future research could explore whether providing 5-HT could improve swallowing issues, which may benefit patients with neurological disorders like ALS and Parkinson's disease that are linked to 5-HT deficiency.
View Article and Find Full Text PDF

The prevailing dogma is that thermogenic brown adipose tissue (BAT) contributes to improvements in glucose homeostasis in obesogenic animal models, though much of the evidence supporting this premise is from thermostressed rodents. Determination of whether modulation of the BAT morphology/function drives changes in glucoregulation at thermoneutrality requires further investigation. We used loss- and gain-of-function approaches including genetic manipulation of the lipolytic enzyme , change in environmental temperature, and lifestyle interventions to comprehensively test the premise that a thermogenic-like BAT phenotype is coupled with enhanced glucose tolerance in female mice.

View Article and Find Full Text PDF

Objectives/hypothesis: The goal of this study was to objectively examine vocal fold (VF) motion dynamics after iatrogenic recurrent laryngeal nerve (RLN) injury in a mouse surgical model. Furthermore, we sought to identify a method of inducing injury with a consistent recovery pattern from which we can begin to evaluate spontaneous recovery and test therapeutic interventions.

Study Design: Animal model.

View Article and Find Full Text PDF

The gastrointestinal microbiota (GM) plays a fundamental role in health and disease and contributes to the bidirectional signaling between the gastrointestinal system and brain. The direct line of communication between these organ systems is through the vagus nerve. Therefore, vagal nerve stimulation (VNS), a commonly used technique for multiple disorders, has potential to modulate the enteric microbiota, enabling investigation and possibly treatment of numerous neurologic disorders in which the microbiota has been linked with disease.

View Article and Find Full Text PDF

Purpose: The role of granule cell axon (mossy fiber) sprouting in temporal lobe epileptogenesis is unclear and controversial. Rapamycin suppresses mossy fiber sprouting, but its reported effects on seizure frequency are mixed. The present study used high-dose rapamycin to more completely block mossy fiber sprouting and to measure the effect on seizure frequency.

View Article and Find Full Text PDF

Pilocarpine-treated mice are an increasingly used model of temporal lobe epilepsy. However, outcomes of treatment can be disappointing, because many mice die or fail to develop status epilepticus. To improve animal welfare and outcomes of future experiments we analyzed results of previous pilocarpine treatments to identify factors that correlate with development of status epilepticus and survival.

View Article and Find Full Text PDF