Publications by authors named "Megan H Orzalli"

Guard proteins initiate defense mechanisms upon sensing pathogen-encoded virulence factors. Successful viral pathogens likely inhibit guard protein activity, but these interactions have been largely undefined. Here, we demonstrate that the human pathogen herpes simplex virus 1 (HSV-1) stimulates and inhibits an antiviral pathway initiated by NLRP1, a guard protein that induces inflammasome formation and pyroptotic cell death when activated.

View Article and Find Full Text PDF

DNA virus infection triggers an antiviral type I interferon (IFN) response in cells that suppresses infection of surrounding cells. Consequently, viruses have evolved mechanisms to inhibit the IFN response for efficient replication. The cellular cGAS protein binds to double-stranded DNA and synthesizes the small molecule cGAMP to initiate DNA-dependent type I IFN production.

View Article and Find Full Text PDF

Cytosolic innate immune sensing is critical for protecting barrier tissues. NOD1 and NOD2 are cytosolic sensors of small peptidoglycan fragments (muropeptides) derived from the bacterial cell wall. These muropeptides enter cells, especially epithelial cells, through unclear mechanisms.

View Article and Find Full Text PDF

Cytosolic LPS activates the NLRP3 inflammasome via a gasdermin D (GSDMD)-dependent mechanism. In this issue of Immunity, Zhu et al. provide insight into the events linking these two steps, identifying the orphan nuclear receptor Nur77 as a mediator of NLRP3 activation that senses LPS and GSDMD-dependent accumulation of cytosolic mtDNA.

View Article and Find Full Text PDF

Effector-triggered immunity (ETI) is a common defense strategy used by mammalian host cells that is engaged upon detection of the enzymatic activities of pathogen-encoded proteins or the effects of their expression on cellular homeostasis. However, in contrast to the effector-triggered responses engaged upon bacterial infection, much less is understood about the activation and consequences of these responses following viral infection. Several recent studies have identified novel mechanisms by which viruses engage ETI, highlighting the importance of these immune responses in antiviral defense.

View Article and Find Full Text PDF

Polarized epithelial cells form an essential barrier against infection at mucosal surfaces. Many pathogens breach this barrier to cause disease, often by co-opting cellular endocytosis mechanisms to enter the cell through the lumenal (apical) cell surface. We recently discovered that the loss of the cell polarity gene PARD6B selectively diminishes apical endosome function.

View Article and Find Full Text PDF

Two sets of innate immune proteins detect pathogens. Pattern recognition receptors (PRRs) bind microbial products, whereas guard proteins detect virulence factor activities by the surveillance of homeostatic processes within cells. While PRRs are well known for their roles in many types of infections, the role of guard proteins in most infectious contexts remains less understood.

View Article and Find Full Text PDF

Stimulator of interferon genes (STING) is a key regulator of type I interferon and pro-inflammatory responses during infection, cellular stress, and cancer. Here, we reveal a mechanism for how STING balances activation of IRF3- and NF-κB-dependent transcription and discover that acquisition of discrete signaling modules in the vertebrate STING C-terminal tail (CTT) shapes downstream immunity. As a defining example, we identify a motif appended to the CTT of zebrafish STING that inverts the typical vertebrate signaling response and results in dramatic NF-κB activation and weak IRF3-interferon signaling.

View Article and Find Full Text PDF

The development of novel antiviral compounds is hindered by the lack of model systems that recapitulate the pathophysiology of human infections. Tajpara et al. developed an ex vivo human abdominal skin model of HSV-1 infection to examine host-pathogen interactions and test the efficacy of antiviral compounds.

View Article and Find Full Text PDF

Virulent pathogens often cause the release of host-derived damage-associated molecular patterns (DAMPs) from infected cells. During encounters with immune-evasive viruses that block inflammatory gene expression, preformed DAMPs provide backup inflammatory signals that ensure protective immunity. Whether DAMPs exhibit additional backup defense activities is unknown.

View Article and Find Full Text PDF

The initial events after DNA virus infection involve a race between epigenetic silencing of the incoming viral DNA by host cell factors and expression of viral genes. Several host gene products, including the nuclear domain 10 (ND10) components PML (promyelocytic leukemia) and Daxx (death domain-associated protein 6), as well as IFI16 (interferon-inducible protein 16), have been shown to restrict herpes simplex virus 1 (HSV-1) replication. Whether IFI16 and ND10 components work together or separately to restrict HSV-1 replication is not known.

View Article and Find Full Text PDF

Group A protease SpeB directly binds and activates IL-1β (LaRock , this issue).

View Article and Find Full Text PDF

Antiviral transcriptional responses and regulated cell death are crucial components of the host response to virus infection. However, in contrast to the signaling pathways that promote antiviral transcription, those that initiate cell death following virus infection are less understood. Several recent studies have identified pattern recognition receptors (PRRs) of the mammalian innate immune system that activate cell death pathways.

View Article and Find Full Text PDF

Innate immune responses play a major role in the control of herpes simplex virus (HSV) infections, and a multiplicity of mechanisms have emerged as a result of human evolution to sense and respond to HSV infections. HSV in turn has evolved a number of ways to evade immune detection and to blunt human innate immune responses. In this review, we summarize the major host innate immune mechanisms and the HSV evasion mechanisms that have evolved.

View Article and Find Full Text PDF

Unlabelled: The herpes simplex virus 1 (HSV-1) ICP0 protein is an E3 ubiquitin ligase that promotes the degradation of several host cell proteins. Most studies have found that ICP0 promotes the loss of IFI16 in infected cells, but one study reported that ICP0 was not necessary or sufficient for loss of IFI16 in a tumor-derived cell line. Therefore, in this study, we examined the requirement for ICP0 in promoting the loss of IFI16 in several normal and tumor-derived cell lines.

View Article and Find Full Text PDF

Interferon γ-inducible protein 16 (IFI16) and cGMP-AMP synthase (cGAS) have both been proposed to detect herpesviral DNA directly in herpes simplex virus (HSV)-infected cells and initiate interferon regulatory factor-3 signaling, but it has been unclear how two DNA sensors could both be required for this response. We therefore investigated their relative roles in human foreskin fibroblasts (HFFs) infected with HSV or transfected with plasmid DNA. siRNA depletion studies showed that both are required for the production of IFN in infected HFFs.

View Article and Find Full Text PDF

Mammalian cells detect foreign DNA introduced as free DNA or as a result of microbial infection, leading to the induction of innate immune responses that block microbial replication and the activation of mechanisms that epigenetically silence the genes encoded by the foreign DNA. A number of DNA sensors localized to a variety of sites within the cell have been identified, and this review focuses on the mechanisms that detect viral DNA and how the resulting responses affect viral infections. Viruses have evolved mechanisms that inhibit these host sensors and signaling pathways, and the study of these antagonistic viral strategies has provided insight into the mechanisms of these host responses.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on Toll-like receptors (TLRs) in the innate immune system, which are found in different organelles but activate a shared signaling pathway important for defense against infections.
  • It highlights the role of the sorting adaptor TIRAP in regulating TLR signaling from both the plasma membrane and endosomes, facilitating the formation of a protein complex called the myddosome that controls inflammation.
  • The research reveals that TIRAP's ability to bind to various lipids allows it to navigate between different cellular locations, showcasing how a less specific approach can effectively enhance immune signaling across multiple compartments.
View Article and Find Full Text PDF

Mammalian cells have evolved mechanisms to silence foreign DNA introduced by viruses or by transfection. Upon herpesviral infection of cells, the viral genome is chromatinized in an attempt by the host cell to restrict expression of the viral genome. HSV ICP0 acts to counter host-intrinsic and innate responses to viral infection.

View Article and Find Full Text PDF

The innate immune system senses viral DNA that enters mammalian cells, or in aberrant situations self-DNA, and triggers type I interferon production. Here we present an integrative approach that combines quantitative proteomics, genomics and small molecule perturbations to identify genes involved in this pathway. We silenced 809 candidate genes, measured the response to dsDNA and connected resulting hits with the known signaling network.

View Article and Find Full Text PDF

Innate sensing of microbial components is well documented to occur at many cellular sites, including at the cell surface, in the cytosol, and in intracellular vesicles, but there is limited evidence of nuclear innate signaling. In this study we have defined the mechanisms of interferon regulatory factor-3 (IRF-3) signaling in primary human foreskin fibroblasts (HFF) infected with herpes simplex virus 1 (HSV-1) in the absence of viral gene expression. We found that the interferon inducible protein 16 (IFI16) DNA sensor, which is required for induction of IRF-3 signaling in these cells, is nuclear, and its localization does not change detectably upon HSV-1 d109 infection and induction of IRF-3 signaling.

View Article and Find Full Text PDF