Clinical trials completed in the last two decades have contributed significantly to the improved overall survival of children with cancer. In spite of these advancements, disease relapse still remains a significant cause of death in this patient population. Often, increasing the intensity of current protocols is not feasible because of cumulative toxicity and development of drug resistance.
View Article and Find Full Text PDFVaccinia virus (VV) is a powerful tool for cancer treatment with the potential for tumor tropism, efficient cell-to-cell spread, rapid replication in cancer cells, and stimulation of anti-tumor immunity. It has a well-defined safety profile and is being assessed in late-stage clinical trials. However, VV clinical utility is limited by rapid bloodstream neutralization and poor penetration into tumors.
View Article and Find Full Text PDFTesting ultrasound-mediated cavitation for enhanced delivery of the therapeutic antibody cetuximab to tumors in a mouse model. Tumors with strong EGF receptor expression were grown bilaterally. Cetuximab was coadministered intravenously with cavitation nuclei, consisting of either the ultrasound contrast agent Sonovue or gas-stabilizing nanoscale SonoTran Particles.
View Article and Find Full Text PDFUltrasound-induced cavitation has been proposed as a strategy to tackle the challenge of inadequate extravasation, penetration and distribution of therapeutics into tumours. Here, the ability of microbubbles, droplets and solid gas-trapping particles to facilitate mass transport and extravasation of a model therapeutic agent following ultrasound-induced cavitation is investigated. Significant extravasation and penetration depths on the order of millimetres are achieved with all three agents, including the range of pressures and frequencies achievable with existing clinical ultrasound systems.
View Article and Find Full Text PDFThe treatment of cancer using nanomedicines is limited by the poor penetration of these potentially powerful agents into and throughout solid tumors. Externally controlled mechanical stimuli, such as the generation of cavitation-induced microstreaming using ultrasound (US), can provide a means of improving nanomedicine delivery. Notably, it has been demonstrated that by focusing, monitoring and controlling the US exposure, delivery can be achieved without damage to surrounding tissue or vasculature.
View Article and Find Full Text PDFExpert Opin Drug Deliv
July 2016
Introduction: The successful treatment of metastatic cancer is refractory to strategies employed to treat confined, primary lesions, such as surgical resection and radiation therapy, and thus must be addressed by systemic delivery of anti-cancer agents. Conventional systemically administered chemotherapeutics are often ineffective and come with severe dose-limiting toxicities.
Areas Covered: This review focuses on the recent developments in systemic therapy for metastatic cancer.