Monitoring pesticide run-off in the aquatic environment is ecologically important. Effective methods are required to detect the wide range of possible pesticides that enter estuaries from the surrounding catchment. Here, we investigate the occurrence of pesticides in the Richmond River estuary, Australia, and compare the effectiveness of using oysters and Chemcatcher® passive sampling devices against composite water samples.
View Article and Find Full Text PDFThe Southeast Asia and Melanesia region has extensive nickel (Ni)-rich lateritic regoliths formed from the tropical weathering of ultramafic rocks. As the global demand for Ni continues to rise, these lateritic regoliths are increasingly being exploited for their economic benefit. Mining of these regoliths contributes to the enrichment of coastal sediments in trace metals, especially Ni.
View Article and Find Full Text PDFNickel laterite ore deposits are becoming increasingly important sources of Ni for the global marketplace and are found mainly in tropical and subtropical regions, including Indonesia, the Philippines, Papua New Guinea, Cuba, and New Caledonia. There are few legislatively derived standards or guidelines for the protection of aquatic life for Ni in many of these tropical regions, and bioavailability-based environmental risk assessment (ERA) approaches for metals have mainly been developed and tested in temperate regions, such as the United States and Europe. This paper reports on a multi-institutional, 5-y testing program to evaluate Ni exposure, effects, and risk characterization in the Southeast Asia and Melanesia (SEAM) region, which includes New Caledonia, Papua New Guinea, the Philippines, and Indonesia.
View Article and Find Full Text PDFThe geographical shift of nickel mining to small island countries of the Southeast Asia and Melanesia region has produced a need to assess the environmental risk associated with increased sediment nickel exposure to benthic estuarine/marine biota. Chemical measurements of nickel concentration and potential bioavailability, including the use of diffusive gradients in thin films (DGT), were compared to effects on 10-d reproduction of the epibenthic estuarine/marine amphipod Melita plumulosa in nickel-spiked sediments and field-contaminated sediments with different characteristics. The 10% effect concentrations (EC10s) for amphipod reproduction ranged from 280 to 690 mg/kg total recoverable nickel, from 110 to 380 mg/kg dilute acid-extractable nickel, and from 34 to 87 μg Ni/m /h DGT-labile nickel flux.
View Article and Find Full Text PDFIntensification of lateritic nickel mining in Southeast Asia and Melanesia potentially threatens coastal ecosystems from increased exposure to nickel and suspended sediment. This study investigated the response of Acropora muricata when exposed to either dissolved nickel, clean suspended sediment or nickel-contaminated suspended sediment for 7 days, followed by a 7-d recovery period. Significant bleaching and accumulation of nickel in coral tissue was observed only after exposure to high dissolved nickel concentrations and nickel-spiked suspended sediment.
View Article and Find Full Text PDFLocalised aluminium contamination can lead to high concentrations in coastal waters, which have the potential for adverse effects on aquatic organisms. This research investigated the toxicity of 72-h exposures of aluminium to three marine diatoms (Ceratoneis closterium (formerly Nitzschia closterium), Minutocellus polymorphus and Phaeodactylum tricornutum) by measuring population growth rate inhibition and cell membrane damage (SYTOX Green) as endpoints. Toxicity was correlated to the time-averaged concentrations of different aluminium size-fractions, operationally defined as <0.
View Article and Find Full Text PDF