Breast cancer affects 1/8 of women throughout their lifetimes, with 90% of cancer deaths being caused by metastasis. However, metastasis poses unique challenges to research, as complex changes in the microenvironment in different metastatic sites and difficulty obtaining tissue for study hinder the ability to examine in depth the changes that occur during metastasis. Rapid autopsy programs thus fill a unique need in advancing metastasis research.
View Article and Find Full Text PDFBreast cancer is a leading cause of female mortality and despite advancements in personalized therapeutics, metastatic disease largely remains incurable due to drug resistance. The estrogen receptor (ER, ESR1) is expressed in two-thirds of all breast cancer, and under endocrine stress, somatic ESR1 mutations arise in approximately 30% of cases that result in endocrine resistance. We and others reported ESR1 fusions as a mechanism of ER-mediated endocrine resistance.
View Article and Find Full Text PDFUnlabelled: Breast cancer is a leading cause of female mortality and despite advancements in diagnostics and personalized therapeutics, metastatic disease largely remains incurable due to drug resistance. Fortunately, identification of mechanisms of therapeutic resistance have rapidly transformed our understanding of cancer evasion and is enabling targeted treatment regimens. When the druggable estrogen receptor (ER, ), expressed in two-thirds of all breast cancer, is exposed to endocrine therapy, there is risk of somatic mutation development in approximately 30% of cases and subsequent treatment resistance.
View Article and Find Full Text PDFTransmembrane proteins have unique requirements to fold and integrate into the endoplasmic reticulum (ER) membrane. Most notably, transmembrane proteins must fold in three separate environments: extracellular domains fold in the oxidizing environment of the ER lumen, transmembrane domains (TMDs) fold within the lipid bilayer, and cytosolic domains fold in the reducing environment of the cytosol. Moreover, each region is acted upon by a unique set of chaperones and monitored by components of the ER associated quality control machinery that identify misfolded domains in each compartment.
View Article and Find Full Text PDFBackground And Objective: Females represent 49.6% of the global population and constitute a significant proportion of surgical patients and hospital admissions. Little is known about the bi-directional effects of sex and anesthetics or the impact of anesthetic interventions on long-term female health outcomes.
View Article and Find Full Text PDFUnlabelled: As one of the most successful cancer therapeutic targets, estrogen receptor-α (ER/ESR1) has been extensively studied over the past few decades. Sequencing technological advances have enabled genome-wide analysis of ER action. However, comparison of individual studies is limited by different experimental designs, and few meta-analyses are available.
View Article and Find Full Text PDFAs one of the most successful cancer therapeutic targets, estrogen receptor-α (ER/ESR1) has been extensively studied in decade-long. Sequencing technological advances have enabled genome-wide analysis of ER action. However, reproducibility is limited by different experimental design.
View Article and Find Full Text PDFUnlabelled: No special-type breast cancer [NST; commonly known as invasive ductal carcinoma (IDC)] and invasive lobular carcinoma (ILC) are the two major histological subtypes of breast cancer with significant differences in clinicopathological and molecular characteristics. The defining pathognomonic feature of ILC is loss of cellular adhesion protein, E-cadherin (CDH1). We have previously shown that E-cadherin functions as a negative regulator of the IGF1R and propose that E-cadherin loss in ILC sensitizes cells to growth factor signaling that thus alters their sensitivity to growth factor-signaling inhibitors and their downstream activators.
View Article and Find Full Text PDFRecurrent gene fusions comprise a class of viable genetic targets in solid tumors that have culminated several recent breakthrough cancer therapies. Their role in breast cancer, however, remains largely underappreciated due to the complexity of genomic rearrangements in breast malignancy. Just recently, we and others have identified several recurrent gene fusions in breast cancer with important clinical and biological implications.
View Article and Find Full Text PDFMolecular chaperones, such as Hsp70, prevent proteotoxicity and maintain homeostasis. This is perhaps most evident in cancer cells, which overexpress Hsp70 and thrive even when harboring high levels of misfolded proteins. To define the response to proteotoxic challenges, we examined adaptive responses in breast cancer cells in the presence of an Hsp70 inhibitor.
View Article and Find Full Text PDFPhenylalanine hydroxylase-deficient (PAH-deficient) phenylketonuria (PKU) results in systemic hyperphenylalaninemia, leading to neurotoxicity with severe developmental disabilities. Dietary phenylalanine (Phe) restriction prevents the most deleterious effects of hyperphenylalaninemia, but adherence to diet is poor in adult and adolescent patients, resulting in characteristic neurobehavioral phenotypes. Thus, an urgent need exists for new treatments.
View Article and Find Full Text PDFStudies in the yeast have helped define mechanisms underlying the activity of the ubiquitin-proteasome system (UPS), uncover the proteasome assembly pathway, and link the UPS to the maintenance of cellular homeostasis. However, the spectrum of UPS substrates is incompletely defined, even though multiple techniques-including MS-have been used. Therefore, we developed a substrate trapping proteomics workflow to identify previously unknown UPS substrates.
View Article and Find Full Text PDFOver-expression of the Hsp70 molecular chaperone prevents protein aggregation and ameliorates neurodegenerative disease phenotypes in model systems. We identified an Hsp70 activator, MAL1-271, that reduces α-synuclein aggregation in a Parkinson's Disease model. We now report that MAL1-271 directly increases the ATPase activity of a eukaryotic Hsp70.
View Article and Find Full Text PDFThe epithelial Na channel (ENaC) possesses a large extracellular domain formed by a β-strand core enclosed by three peripheral α-helical subdomains, which have been dubbed thumb, finger, and knuckle. Here we asked whether the ENaC thumb domains play specific roles in channel function. To this end, we examined the characteristics of channels lacking a thumb domain in an individual ENaC subunit (α, β, or γ).
View Article and Find Full Text PDFIn the kidney, the epithelial sodium channel (ENaC) regulates blood pressure through control of sodium and volume homeostasis, and in the lung, ENaC regulates the volume of airway and alveolar fluids. ENaC is a heterotrimer of homologous α-, β- and γ-subunits, and assembles in the endoplasmic reticulum (ER) before it traffics to and functions at the plasma membrane. Improperly folded or orphaned ENaC subunits are subject to ER quality control and targeted for ER-associated degradation (ERAD).
View Article and Find Full Text PDFThe extracellular regions of epithelial Na(+) channel subunits are highly ordered structures composed of domains formed by α helices and β strands. Deletion of the peripheral knuckle domain of the α subunit in the αβγ trimer results in channel activation, reflecting an increase in channel open probability due to a loss of the inhibitory effect of external Na(+) (Na(+) self-inhibition). In contrast, deletion of either the β or γ subunit knuckle domain within the αβγ trimer dramatically reduces epithelial Na(+) channel function and surface expression, and impairs subunit maturation.
View Article and Find Full Text PDF