Mislabeling samples or data with the wrong participant information can affect study integrity and lead investigators to draw inaccurate conclusions. Quality control to prevent these types of errors is commonly embedded into the analysis of genomic datasets, but a similar identification strategy is not standard for cytometric data. Here, we present a method for detecting sample identification errors in cytometric data using expression of human leukocyte antigen (HLA) class I alleles.
View Article and Find Full Text PDFBackground: Women with HIV face an increased risk of preterm birth. 17 alpha-hydroxyprogesterone caproate (17P) has been shown in some trials to reduce early delivery among women with a history of spontaneous preterm birth. We investigated whether 17P would reduce this risk among women with HIV.
View Article and Find Full Text PDFObjective: To investigate whether angiogenic biomarker concentrations differ between women who deliver small-for-gestational-age (SGA) infants (<10th centile birth weight for gestational age) compared with controls, because identifying SGA risk early could improve outcomes.
Methods: This case-control study compared serum concentrations of angiogenic biomarkers before 24 weeks of pregnancy from 62 women who delivered SGA infants (cases) and 62 control women from an urban Zambian cohort. Odds of delivering an SGA infant were calculated using conditional logistic regression.
Background: Maternal HIV increases the risk of adverse birth outcomes including preterm birth, fetal growth restriction, and stillbirth, but the biological mechanism(s) underlying this increased risk are not well understood. We hypothesized that maternal HIV may lead to adverse birth outcomes through an imbalance in angiogenic factors involved in the vascular endothelial growth factor (VEGF) signaling pathway.
Methods: In a case-control study nested within an ongoing cohort in Zambia, our primary outcomes were serum concentrations of VEGF-A, soluble endoglin (sEng), placental growth factor (PlGF), and soluble fms-like tyrosine kinase-1 (sFLT-1).
Many cell behaviors are significantly affected by cell culture geometry, though it remains unclear which geometry from two- to three-dimensional (2D to 3D) culture is appropriate for probing a specific cell function and mimicking native microenvironments. Toward addressing this, we established a 2.5D culture geometry, enabling initial cell spreading while reducing polarization to bridge between 2D and 3D geometries, and examined the responses of wound healing cells, human pulmonary fibroblasts, within it.
View Article and Find Full Text PDFSynthetic hydrogels have been widely adopted as well-defined matrices for three-dimensional (3D) cell culture, with increasing interest in systems that enable the co-culture of multiple cell types for probing both cell-matrix and cell-cell interactions in studies of tissue regeneration and disease. We hypothesized that the unique dynamic covalent chemistry of self-healing hydrogels could be harnessed for not only the encapsulation and culture of human cells but also the subsequent construction of layered hydrogels for 3D co-cultures. To test this, we formed hydrogels using boronic acid-functionalized polymers and demonstrated their self-healing in the presence of physiologically-relevant cell culture media.
View Article and Find Full Text PDFSynthetic hydrogels with well-defined mechanical properties have become invaluable tools for probing cell response to extracellular cues including matrix stiffness and integrin binding. These synthetic matrices are often decorated with either proteins or integrin-binding peptides to promote cell adhesion and to direct or probe cell behavior. For example, both collagen I-functionalized polyacrylamide and peptide-functionalized poly(ethylene glycol) hydrogels have been instrumental in elucidating the role of the elasticity or 'stiffness' of the matrix in promoting fibroblast activation in wound healing and fibrosis.
View Article and Find Full Text PDFWound healing results from complex signaling between cells and their environment in response to injury. Fibroblasts residing within the extracellular matrix (ECM) of various connective tissues are critical for matrix synthesis and repair. Upon injury or chronic insult, these cells activate into wound-healing cells, called myofibroblasts, and repair the damaged tissue through enzyme and protein secretion.
View Article and Find Full Text PDF