Strangles is a contagious bacterial disease of horses caused by Streptococcus equi subspecies equi (SEE) that occurs globally. Rapid and accurate identification of infected horses is essential for controlling strangles. Because of limitations of existing PCR assays for SEE, we sought to identify novel primers and probes that enable simultaneous detection and differentiation of infection with SEE and S.
View Article and Find Full Text PDFPatients with aortic valve stenosis (AVS) have sexually dimorphic phenotypes in their valve tissue, where male valvular tissue adopts a calcified phenotype and female tissue becomes more fibrotic. The molecular mechanisms that regulate sex-specific calcification in valvular tissue remain poorly understood. Here, we explored the role of osteopontin (OPN), a pro-fibrotic but anti-calcific bone sialoprotein, in regulating the calcification of female aortic valve tissue.
View Article and Find Full Text PDFTrichomonosis is a venereal disease of cattle caused by the protozoan infection in cattle herds can be economically costly for cattle producers; therefore, testing is important for detection of the agent. Given that bulls are considered to be subclinical carriers of , it is important to detect infection prior to movement and/or breeding season. We have described previously the development of an updated set of PCR primers and probes that offer increased sensitivity of detection in preputial washings collected in PBS by utilizing reverse-transcription real-time PCR (RT-rtPCR) that targets the 5.
View Article and Find Full Text PDFAortic valve stenosis (AVS) is a progressive fibrotic disease that is caused by thickening and stiffening of valve leaflets. At the cellular level, quiescent valve interstitial cells (qVICs) activate to myofibroblasts (aVICs) that persist within the valve tissue. Given the persistence of myofibroblasts in AVS, epigenetic mechanisms have been implicated.
View Article and Find Full Text PDFAs aortic valve stenosis develops, valve tissue becomes stiffer. In response to this change in environmental mechanical stiffness, valvular interstitial cells (VICs) activate into myofibroblasts. We aimed to investigate the role of mechanosensitive calcium channel Transient Receptor Potential Vanilloid type 4 (TRPV4) in stiffness induced myofibroblast activation.
View Article and Find Full Text PDFBackground: Aortic valve stenosis is a sexually dimorphic disease, with women often presenting with sustained fibrosis and men with more extensive calcification. However, the intracellular molecular mechanisms that drive these clinically important sex differences remain underexplored.
Methods: Hydrogel biomaterials were designed to recapitulate key aspects of the valve tissue microenvironment and to serve as a culture platform for sex-specific valvular interstitial cells (VICs; precursors to profibrotic myofibroblasts).
A collagen-rich tumor microenvironment (TME) is associated with worse outcomes in cancer patients and contributes to drug resistance in many cancer types. In melanoma, stiff and fibrillar collagen-abundant tissue is observed after failure of therapeutic treatments with BRAF inhibitors. Increased collagen in the TME can affect properties of the extracellular matrix (ECM), including stiffness, adhesiveness, and interaction of integrins with triple helix forming nanostructures.
View Article and Find Full Text PDFNearly all cardiovascular diseases show sexual dimorphisms in prevalence, presentation, and outcomes. Until recently, most clinical trials were carried out in males, and many animal studies either failed to identify the sex of the animals or combined data obtained from males and females. Cellular sex in the heart is relatively understudied and many studies fail to report the sex of the cells used for in vitro experiments.
View Article and Find Full Text PDFPro-inflammatory cytokines play critical roles in regulating valvular interstitial cell (VIC) phenotypic changes that can cause heart valve fibrosis and calcification. Tumor necrosis factor alpha (TNF-α) is a cytokine known to influence VIC behavior and has been reported at high levels in calcified valves ex vivo. We sought to understand the specific effects of TNF-α on VIC phenotypes (eg, fibroblast, profibrotic activated myofibroblasts) and its link with heart valve disorders.
View Article and Find Full Text PDFEnzymatically degradable hydrogels were designed for the 3D culture of valvular interstitial cells (VICs), and through the incorporation of various functionalities, we aimed to investigate the role of the tissue microenvironment in promoting the osteogenic properties of VICs and matrix mineralization. Specifically, porcine VICs were encapsulated in a poly(ethylene glycol) hydrogel crosslinked with a matrix metalloproteinase (MMP)-degradable crosslinker (KCGPQG↓IWGQCK) and formed via a thiol-ene photoclick reaction in the presence or absence of collagen type I to promote matrix mineralization. VIC-laden hydrogels were treated with osteogenic medium for up to 15 days, and the osteogenic response was characterized by the expression of RUNX2 as an early marker of an osteoblast-like phenotype, osteocalcin (OCN) as a marker of a mature osteoblast-like phenotype, and vimentin (VIM) as a marker of the fibroblast phenotype.
View Article and Find Full Text PDFObjective: Resident valvular interstitial cells (VICs) activate to myofibroblasts during aortic valve stenosis progression, which further promotes fibrosis or even differentiate into osteoblast-like cells that can lead to calcification of valve tissue. Inflammation is a hallmark of aortic valve stenosis, so we aimed to determine proinflammatory cytokines secreted from M1 macrophages that give rise to a transient VIC phenotype that leads to calcification of valve tissue. Approach and Results: We designed hydrogel biomaterials as valve extracellular matrix mimics enabling the culture of VICs in either their quiescent fibroblast or activated myofibroblast phenotype in response to the local matrix stiffness.
View Article and Find Full Text PDFThe role viscoelasticity in fibrotic disease progression is an emerging area of interest. Here, a fast-relaxing hydrogel system is exploited to investigate potential crosstalk between calcium signaling and mechanotransduction. Poly(ethylene glycol) (PEG) hydrogels containing boronate and triazole crosslinkers are synthesized, with varying ratios of boronate to triazole crosslinks to systematically vary the extent of stress relaxation.
View Article and Find Full Text PDFBluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) cause hemorrhagic disease (HD) in wild ruminants and bluetongue disease (BT) and epizootic hemorrhagic disease (EHD) in livestock. These viruses are transmitted by biting midges in the genus Culicoides (family Ceratopogonidae). Mortality from this disease can reach 90% in certain breeds of sheep and in white-tailed deer (Odocoileus virginianus).
View Article and Find Full Text PDFValve interstitial cells (VIC) are the primary cell type residing within heart valve tissues. In many valve pathologies, VICs become activated and will subsequently profoundly remodel the valve tissue extracellular matrix (ECM). A primary indicator of VIC activation is the upregulation of α-smooth muscle actin (αSMA) stress fibers, which in turn increase VIC contractility.
View Article and Find Full Text PDFValvular interstitial cells (VICs) are responsible for the maintenance of the extracellular matrix in heart valve leaflets and, in response to injury, activate from a quiescent fibroblast to a wound healing myofibroblast phenotype. Under normal conditions, myofibroblast activation is transient, but the chronic presence of activated VICs can lead to valve diseases, such as fibrotic aortic valve stenosis, for which non-surgical treatments remain elusive. We monitored the porcine VIC response to exogenously delivered fibroblast growth factor 2 (FGF-2; 100 ng/ml), transforming growth factor beta 1 (TGF-β1; 5 ng/ml), or a combination of the two while cultured within 3D matrix metalloproteinase (MMP)-degradable 8-arm 40 kDa poly(ethylene glycol) hydrogels that mimic aspects of the aortic valve.
View Article and Find Full Text PDFBovine trichomoniasis is a sexually transmitted disease that results in infertility, abortion, and calf age variability. To date, management strategies include testing for Tritrichomonas foetus and culling of infected males. Challenges associated with testing include cost of culture medium, time and labor burden of sample incubation and processing, and adverse effects of bacterial growth on detection sensitivity.
View Article and Find Full Text PDFIn their native extracellular microenvironment, cells respond to a complex array of biochemical and mechanical cues that can vary in both time and space. High-throughput methods that allow characterization of cell-laden matrices are valuable tools to screen through many combinations of variables, ultimately helping to evolve and test hypotheses related to cell-ECM signaling. Here, we developed a platform for high-throughput encapsulation of cells in peptide-functionalized poly(ethylene glycol) hydrogels.
View Article and Find Full Text PDFAfrican swine fever (ASF), classical swine fever (CSF), and foot-and-mouth disease (FMD) are highly contagious animal diseases of significant economic importance. Pigs infected with ASF and CSF viruses (ASFV and CSFV) develop clinical signs that may be indistinguishable from other diseases. Likewise, various causes of vesicular disease can mimic clinical signs caused by the FMD virus (FMDV).
View Article and Find Full Text PDFBovine anaplasmosis is an infectious, non-contagious disease caused by the rickettsial pathogen Anaplasma marginale (A. marginale). The organism has a global distribution and infects erythrocytes, resulting in anemia, jaundice, fever, abortions and death.
View Article and Find Full Text PDFBackground: Rotavirus (RV) nonstructural protein 4 (NSP4) is the first described viral enterotoxin, which induces early secretory diarrhea in neonatal rodents. Our previous data show a direct interaction between RV NSP4 and the structural protein of caveolae, caveolin-1 (cav-1), in yeast and mammalian cells. The binding site of cav-1 mapped to the NSP4 amphipathic helix, and led us to examine which helical face was responsible for the interaction.
View Article and Find Full Text PDFBluetongue virus (BTV) and Epizootic hemorrhagic disease virus (EHDV) possess similar structural and molecular features, are transmitted by biting midges (genus Culicoides), and cause similar diseases in some susceptible ruminants. Generally, BTV causes subclinical disease in cattle, characterized by a prolonged viremia. EHDV-associated disease in cattle is less prominent; however, it has emerged as a major economic threat to the white-tailed deer (Odocoileus virginianus) industry in many areas of the United States.
View Article and Find Full Text PDFMaterials that are resistant to nonspecific protein adsorption are critical in the biomedical community. Specifically, nonfouling implantable biomaterials are necessary to reduce the undesirable, but natural foreign body response. The focus of this investigation is to demonstrate that polyampholyte hydrogels prepared with equimolar quantities of positively charged [2-(acryloyloxy)ethyl] trimethylammonium chloride (TMA) and negatively charged 2-carboxyethyl acrylate (CAA) monomers are a viable solution to this problem.
View Article and Find Full Text PDFCalf diarrhea (scours) is a primary cause of illness and death in young calves. Significant economic losses associated with this disease include morbidity, mortality, and direct cost of treatment. Multiple pathogens are responsible for infectious diarrhea, including, but not limited to, Bovine coronavirus (BCV), bovine Rotavirus A (BRV), and Cryptosporidium spp.
View Article and Find Full Text PDFRotavirus (RV) NSP4, the first described viral enterotoxin, is a multifunctional glycoprotein that contributes to viral pathogenesis, morphogenesis, and replication. NSP4 binds both termini of caveolin-1 and is isolated from caveolae fractions that are rich in anionic phospholipids and cholesterol. These interactions indicate that cholesterol/caveolin-1 plays a role in NSP4 transport to the cell surface, which is essential to its enterotoxic activity.
View Article and Find Full Text PDF