Publications by authors named "Megan E Francis-Sedlak"

Engineered vascularized adipose tissue could serve as an alternative to traditional tissue reconstruction procedures. Adipose formation occurs in a coordinated fashion with neovascularization. Previous studies have shown that extracellular matrix-based materials supplemented with factors that stimulate neovascularization promote adipogenesis in a number of animal models.

View Article and Find Full Text PDF

Microvascular network formation is required for the success of many therapies in regenerative medicine. The process of vessel assembly is fundamentally altered, however, in many people within the potential patient population, including the elderly and people with diabetes. Significant research has been performed to determine how cellular dysfunction contributes to this inadequate neovascularization, but alterations in the extracellular matrix (ECM) may also influence this process.

View Article and Find Full Text PDF

Chronic exposure to reducing sugars due to diabetes, aging, and diet can permanently modify extracellular matrix (ECM) proteins. This non-enzymatic glycosylation, or glycation, can lead to the formation of advanced glycation end products (AGE) and crosslinking of the ECM. This study investigates the effects of glycation on the properties of type I collagen gels.

View Article and Find Full Text PDF