Publications by authors named "Megan Dennis"

The professional identity of scientists has historically been cultivated to value research over teaching, which can undermine initiatives that aim to reform science education. Course-Based Research Experiences (CRE) and the inclusive Research and Education Communities (iREC) are two successful and impactful reform efforts that integrate research and teaching. The aim of this study is to explicate the professional identity of instructors who implement a CRE within an established iREC and to explore how this identity contributes to the success of these programs.

View Article and Find Full Text PDF
Article Synopsis
  • Over two decades, initiatives have aimed to enhance STEM undergraduate outcomes, with the inclusive Research Education Community (iREC) emerging as a scalable reform model that supports STEM faculty in implementing course-based research to improve student learning.
  • This study utilized pathway modeling to describe the HHMI Science Education Alliance (SEA) iREC, identifying how faculty engagement leads to sustainable adoption and improvement of new teaching strategies through feedback from over 100 participating faculty members.
  • The findings indicate that iREC fosters a collaborative environment where STEM faculty can share expertise and data, thereby enhancing their teaching practices and contributing to the overall evolution of undergraduate science education.
View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the role of duplicated genes in human brain evolution, focusing on genes that are uniquely expanded in humans and their potential contributions to neurological traits like language and cognition.
  • - By analyzing a complete human genome and using advanced methods, the researchers identified 213 duplicated gene families and narrowed it down to 362 paralogs that are highly expressed in the brain and associated with autism-related genes.
  • - The research also utilized zebrafish models to "humanize" certain genes, revealing key insights into their roles in brain development, such as their impact on brain size and synaptic signaling.
View Article and Find Full Text PDF

The expansion of the human family, resulting in a human-specific paralog likely contributed to altered evolutionary brain features. The introduction of in mouse models is associated with changes in cortical neuronal migration, axon guidance, synaptogenesis, and sensory-task performance. Truncated SRGAP2C heterodimerizes with the full-length ancestral gene product SRGAP2A and antagonizes its functions.

View Article and Find Full Text PDF

Advances in sequencing technologies have enabled the comparison of high-quality genomes of diverse primate species, revealing vast amounts of divergence due to structural variation. Given their large size, structural variants (SVs) can simultaneously alter the function and regulation of multiple genes. Studies estimate that collectively more than 3.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists study how animals change to survive in different places, which is really important for understanding biology.
  • They looked at chimpanzees, our closest relatives, who live in many types of environments like rainforests and savannahs.
  • By examining genetic information from wild chimpanzees, they discovered that some chimps have adapted to fight off malaria in similar ways to humans, showing how important genetic diversity is for endangered animals.
View Article and Find Full Text PDF

Mechanisms underlying phenotypic divergence across species remain unresolved. In this issue of Cell Genomics, Hansen, Fong, et al. systematically dissect human and rhesus macaque gene expression divergence by screening tens of thousands of orthologous elements for enhancer activity in lymphoblastoid cell lines, revealing a much greater role for trans divergence at levels equal to those of cis effects, counter to the prevailing consensus in the field.

View Article and Find Full Text PDF

Actinobacteriophage Djungelskog was isolated from a sample of degraded organic material in Poughkeepsie, NY, using . Its genome is 54,512 bp and encodes 86 putative protein-coding genes. Djungelskog has a siphovirus morphology and is assigned to cluster AW based on gene content similarity to actinobacteriophages.

View Article and Find Full Text PDF
Article Synopsis
  • Developmental biology isn't as popular or well-funded as it used to be, and other science fields are getting more attention instead.
  • A group of scientists from different parts of developmental biology met to discuss problems that are slowing down new discoveries and to suggest ways to fix them.
  • They want to "rebrand" the field, get more funding, encourage teamwork between different science areas, improve how science is taught, communicate better, and make sure everyone has equal opportunities and resources.
View Article and Find Full Text PDF

The enhanced cognitive abilities characterizing the human species result from specialized features of neurons and circuits. Here, we report that the hominid-specific gene LRRC37B encodes a receptor expressed in human cortical pyramidal neurons (CPNs) and selectively localized to the axon initial segment (AIS), the subcellular compartment triggering action potentials. Ectopic expression of LRRC37B in mouse CPNs in vivo leads to reduced intrinsic excitability, a distinctive feature of some classes of human CPNs.

View Article and Find Full Text PDF

Arthrobacteriophage MrAaronian contains a 54,509 bp DNA genome with 87 predicted protein-coding genes. MrAaronian has siphovirus morphology and was collected from a flowerbed soil sample in Poughkeepsie, NY, and isolated on an B-2979 culture. MrAaronian has > 99% nucleotide identity with cluster AW arthrobacteriophages Michelle, Stayer, Sloopyjoe, and StarLord.

View Article and Find Full Text PDF

While autism spectrum disorder affects nearly 2% of children in the United States, little is known with certainty concerning the etiologies and brain systems involved. This is due, in part, to the substantial heterogeneity in the presentation of the core symptoms of autism as well as the great number of co-occurring conditions that are common in autistic individuals. Understanding the neurobiology of autism is further hampered by the limited availability of postmortem brain tissue to determine the cellular and molecular alterations that take place in the autistic brain.

View Article and Find Full Text PDF
Article Synopsis
  • The human reference genome, GRCh38, has errors like duplicated and collapsed regions, which can affect important genes related to health.
  • FixItFelix is a new method that helps correct these errors quickly and easily without changing the original data's layout.
  • The improvements help scientists study different populations better and understand how genes can affect traits and diseases.
View Article and Find Full Text PDF

Structural variants (SVs)-including duplications, deletions, and inversions of DNA-can have significant genomic and functional impacts but are technically difficult to identify and assay compared with single-nucleotide variants. With the aid of new genomic technologies, it has become clear that SVs account for significant differences across and within species. This phenomenon is particularly well-documented for humans and other primates due to the wealth of sequence data available.

View Article and Find Full Text PDF

Course-based research pedagogy involves positioning students as contributors to authentic research projects as part of an engaging educational experience that promotes their learning and persistence in science. To develop a model for assessing and grading students engaged in this type of learning experience, the assessment aims and practices of a community of experienced course-based research instructors were collected and analyzed. This approach defines four aims of course-based research assessment - 1) Assessing Laboratory Work and Scientific Thinking; 2) Evaluating Mastery of Concepts, Quantitative Thinking and Skills; 3) Appraising Forms of Scientific Communication; and 4) Metacognition of Learning - along with a set of practices for each aim.

View Article and Find Full Text PDF

Social monogamy is a reproductive strategy characterized by pair living and defense of a common territory. Pair bonding, sometimes displayed by monogamous species, is an affective construct that includes preference for a specific partner, distress upon separation, and the ability of the partner to buffer against stress. Many seahorse species show a monogamous social structure in the wild, but their pair bond has not been well studied.

View Article and Find Full Text PDF

Compared to its predecessors, the Telomere-to-Telomere CHM13 genome adds nearly 200 million base pairs of sequence, corrects thousands of structural errors, and unlocks the most complex regions of the human genome for clinical and functional study. We show how this reference universally improves read mapping and variant calling for 3202 and 17 globally diverse samples sequenced with short and long reads, respectively. We identify hundreds of thousands of variants per sample in previously unresolved regions, showcasing the promise of the T2T-CHM13 reference for evolutionary and biomedical discovery.

View Article and Find Full Text PDF

Since its initial release in 2000, the human reference genome has covered only the euchromatic fraction of the genome, leaving important heterochromatic regions unfinished. Addressing the remaining 8% of the genome, the Telomere-to-Telomere (T2T) Consortium presents a complete 3.055 billion-base pair sequence of a human genome, T2T-CHM13, that includes gapless assemblies for all chromosomes except Y, corrects errors in the prior references, and introduces nearly 200 million base pairs of sequence containing 1956 gene predictions, 99 of which are predicted to be protein coding.

View Article and Find Full Text PDF

Existing human genome assemblies have almost entirely excluded repetitive sequences within and near centromeres, limiting our understanding of their organization, evolution, and functions, which include facilitating proper chromosome segregation. Now, a complete, telomere-to-telomere human genome assembly (T2T-CHM13) has enabled us to comprehensively characterize pericentromeric and centromeric repeats, which constitute 6.2% of the genome (189.

View Article and Find Full Text PDF

Background: Autism spectrum disorder (ASD) involves complex genetics interacting with the perinatal environment, complicating the discovery of common genetic risk. The epigenetic layer of DNA methylation shows dynamic developmental changes and molecular memory of in utero experiences, particularly in placenta, a fetal tissue discarded at birth. However, current array-based methods to identify novel ASD risk genes lack coverage of the most structurally and epigenetically variable regions of the human genome.

View Article and Find Full Text PDF

Background: Zebrafish have practical features that make them a useful model for higher-throughput tests of gene function using CRISPR/Cas9 editing to create 'knockout' models. In particular, the use of G mosaic mutants has potential to increase throughput of functional studies significantly but may suffer from transient effects of introducing Cas9 via microinjection. Further, a large number of computational and empirical tools exist to design CRISPR assays but often produce varied predictions across methods leaving uncertainty in choosing an optimal approach for zebrafish studies.

View Article and Find Full Text PDF

Tracking and quantifying the abundance and location of cells in the developing brain is essential in neuroscience research, enabling a greater understanding of mechanisms underlying nervous system morphogenesis. Widely used experimental methods to quantify cells labeled with fluorescent markers, such as immunohistochemistry (IHC), hybridization, and expression of transgenes via stable lines or transient electroporations (IUEs), depend on accurate and consistent quantification of images. Current methods to quantify fluorescently-labeled cells rely on labor-intensive manual counting approaches, such as the Fiji plugin , which requires custom macros to enable higher-throughput analyses.

View Article and Find Full Text PDF

Emerging evidence links genes within human-specific segmental duplications (HSDs) to traits and diseases unique to our species. Strikingly, despite being nearly identical by sequence (>98.5%), paralogous HSD genes are differentially expressed across human cell and tissue types, though the underlying mechanisms have not been examined.

View Article and Find Full Text PDF

Membrane transport carriers fuse with target membranes through engagement of cognate vSNAREs and tSNAREs on each membrane. How vSNAREs are sorted into transport carriers is incompletely understood. Here we show that VAMP7, the vSNARE for fusing endosome-derived tubular transport carriers with maturing melanosomes in melanocytes, is sorted into transport carriers in complex with the tSNARE component STX13.

View Article and Find Full Text PDF

In recent years, zebrafish have become commonly used as a model for studying human traits and disorders. Their small size, high fecundity, and rapid development allow for more high-throughput experiments compared to other vertebrate models. Given that zebrafish share >70% gene homologs with humans and their genomes can be readily edited using highly efficient CRISPR methods, we are now able to rapidly generate mutations impacting practically any gene of interest.

View Article and Find Full Text PDF