A model is developed to describe trace gas uptake and reaction with applications to aerosols and microdroplets. Gas uptake by the liquid is formulated as a coupled equilibria that links gas, surface, and bulk regions of the droplet or solution. Previously, this framework was used in explicit stochastic reaction-diffusion simulations to predict the reactive uptake kinetics of ozone with droplets containing aqueous aconitic acid, maleic acid, and sodium nitrite.
View Article and Find Full Text PDFChemical transformations in aerosols impact the lifetime of particle phase species, the fate of atmospheric pollutants, and both climate- and health-relevant aerosol properties. Timescales for multiphase reactions of ozone in atmospheric aqueous phases are governed by coupled kinetic processes between the gas phase, the particle interface, and its bulk, which respond dynamically to reactive consumption of O. However, models of atmospheric aerosol reactivity often do not account for the coupled nature of multiphase processes.
View Article and Find Full Text PDFA kinetic expression is derived to explain how interfaces alter bulk chemical equilibria and accelerate reactions in micro-compartments. This description, aided by the development of a stochastic model, quantitatively predicts previous experimental observations of accelerated imine synthesis in micron-sized emulsions. The expression accounts for how reactant concentration and compartment size together lead to accelerated reaction rates under micro-confinement.
View Article and Find Full Text PDFElectrospray and Electrosonic Spray Ionization Mass Spectrometry (ESI-MS and ESSI-MS) have been widely used to report evidence that many chemical reactions in micro- and nano-droplets are dramatically accelerated by factors of ∼10 to 10 relative to macroscale bulk solutions. Despite electrospray's relative simplicity to both generate and detect reaction products in charged droplets using mass spectrometry, substantial complexity exists in how the electrospray process itself impacts the interpretation of the mechanism of these observed accelerated rates. ESI and ESSI are both coupled multi-phase processes, in which analytes in small charged droplets are transferred and detected as gas-phase ions with a mass spectrometer.
View Article and Find Full Text PDFSingle droplet levitation provides contactless access to the microphysical and chemical properties of micrometer-sized samples. Most applications of droplet levitation to chemical and biological systems use nondestructive optical techniques to probe droplet properties. To provide improved chemical specificity, we coupled a multicompartment quadrupole electrodynamic trap (QET) with single droplet mass spectrometry.
View Article and Find Full Text PDFSummertime Arctic shipboard observations of oxygenated volatile organic compounds (OVOCs) such as organic acids, key precursors of climatically active secondary organic aerosol (SOA), are consistent with a novel source of OVOCs to the marine boundary layer via chemistry at the sea surface microlayer. Although this source has been studied in a laboratory setting, organic acid emissions from the sea surface microlayer have not previously been observed in ambient marine environments. Correlations between measurements of OVOCs, including high levels of formic acid, in the atmosphere (measured by an online high-resolution time-of-flight mass spectrometer) and dissolved organic matter in the ocean point to a marine source for the measured OVOCs.
View Article and Find Full Text PDFAlthough it is known that soot particles are emitted in large quantities to the atmosphere, our understanding of their environmental effects is limited by our knowledge of how their composition is subsequently altered through atmospheric processing. Here we present an on-line mass spectrometric study of the changing chemical composition of hydrocarbon soot particles as they are oxidized by gas-phase ozone, and we show that the surface-mediated loss rates of adsorbed polycyclic aromatic hydrocarbons in soot are directly connected to a significant increase in the particle redox cycling abilities. With redox cycling implicated as an oxidative stress mechanism that arises after inhalation of atmospheric particles, this work draws a quantitative connection between the detailed heterogeneous chemistry occurring on atmospheric particles and a potential toxic mechanism attributable to that aerosol.
View Article and Find Full Text PDFRationale: On-line analytical techniques such as condensed phase membrane introduction mass spectrometry (CP-MIMS) permit direct and rapid analyte measurements in complex samples. Direct, rapid analytical methods are desirable because they eliminate potential contamination and/or dilution from sample workup steps, facilitate rapid sample screening and allow 'real-time' monitoring applications.
Methods: PDMS hollow fibre membrane (HFM) flow cell interfaces (215 µm, 35 µm, and 0.
Rationale: High-throughput, automated analytical measurements are desirable in many analytical scenarios, as are rapid sample pre-screening techniques to identify 'positive' samples for subsequent measurements using more time-consuming conventional methodologies (e.g., liquid chromatography/mass spectrometry (LC/MS)).
View Article and Find Full Text PDF