Theoretical accounts of the N400 are divided as to whether the amplitude of the N400 response to a stimulus reflects the extent to which the stimulus was predicted, the extent to which the stimulus is semantically similar to its preceding context, or both. We use state-of-the-art machine learning tools to investigate which of these three accounts is best supported by the evidence. GPT-3, a neural language model trained to compute the conditional probability of any word based on the words that precede it, was used to operationalize contextual predictability.
View Article and Find Full Text PDFMetaphorical expressions very often involve words referring to physical entities and experiences. Yet, figures of speech such as metaphors are not intended to be understood literally, word-by-word. We used event-related brain potentials (ERPs) to determine whether metaphorical expressions are processed more like physical or more like abstract expressions.
View Article and Find Full Text PDF