High levels of the cold shock protein Y-box-binding protein-1, YB-1, are tightly correlated with increased cell proliferation and progression. However, the precise mechanism by which YB-1 regulates proliferation is unknown. Here, we found that YB-1 depletion in several cancer cell lines and in immortalized fibroblasts resulted in cytokinesis failure and consequent multinucleation.
View Article and Find Full Text PDFPurpose: To identify the molecular cause in five unrelated families with a distinct autosomal dominant ocular systemic disorder we called ROSAH syndrome due to clinical features of retinal dystrophy, optic nerve edema, splenomegaly, anhidrosis, and migraine headache.
Methods: Independent discovery exome and genome sequencing in families 1, 2, and 3, and confirmation in families 4 and 5. Expression of wild-type messenger RNA and protein in human and mouse tissues and cell lines.
Glioma stem cells (GSCs) play major roles in drug resistance, tumour maintenance and recurrence of glioblastoma. We investigated inhibition of the GTPase dynamin 2 as a therapy for glioblastoma. Glioma cell lines and patient-derived GSCs were treated with dynamin inhibitors, Dynole 34-2 and CyDyn 4-36.
View Article and Find Full Text PDFBackground: Cell division (mitosis) results in the equal segregation of chromosomes between two daughter cells. The mitotic spindle plays a pivotal role in chromosome alignment and segregation during metaphase and anaphase. Structural or functional errors of this spindle can cause aneuploidy, a hallmark of many cancers.
View Article and Find Full Text PDFThe mitotic spindle is required for chromosome congression and subsequent equal segregation of sister chromatids. These processes involve a complex network of signaling molecules located at the spindle. The endocytic protein, clathrin, has a "moonlighting" role during mitosis, whereby it stabilizes the mitotic spindle.
View Article and Find Full Text PDFWe recently reported that CMPD1, originally developed as an inhibitor of MK2 activation, primarily inhibits tubulin polymerisation and induces apoptosis in glioblastoma cells. In the present study we provide detailed pharmacological investigation of CMPD1 analogues with improved molecular properties. We determined their anti-cancer efficacy in glioblastoma cells with enhanced EGFR signalling, as deregulated EGFR often leads to chemoresistance.
View Article and Find Full Text PDFCytokinesis is the final stage of cell division and produces two independent daughter cells. Vesicles derived from internal membrane stores, such as the Golgi, lysosomes, and early and recycling endosomes accumulate at the intracellular bridge (ICB) during cytokinesis. Here, we use electron tomography to show that many ICB vesicles are not independent but connected, forming a newly described ICB vesicular structure - narrow tubules that are often branched.
View Article and Find Full Text PDFThe final stage of mitosis is cytokinesis, which results in 2 independent daughter cells. Cytokinesis has 2 phases: membrane ingression followed by membrane abscission. IQGAP1 is a scaffold protein that interacts with proteins implicated in mitosis, including F-actin, myosin and CaM.
View Article and Find Full Text PDFSmall GTPases
February 2015
Rho GTPases regulate a diverse range of cellular functions primarily through their ability to modulate microtubule dynamics and the actin-myosin cytoskeleton. Both of these cytoskeletal structures are crucial for a mitotic cell division. Specifically, their assembly and disassembly is tightly regulated in a temporal manner to ensure that each mitotic stage occurs in the correct sequential order and not prematurely until the previous stage is completed.
View Article and Find Full Text PDFDynamin GTPase activity increases when it oligomerizes either into helices in the presence of lipid templates or into rings in the presence of SH3 domain proteins. Dynasore is a dynamin inhibitor of moderate potency (IC₅₀ ~ 15 μM in vitro). We show that dynasore binds stoichiometrically to detergents used for in vitro drug screening, drastically reducing its potency (IC₅₀ = 479 μM) and research tool utility.
View Article and Find Full Text PDFSorting nexin 9 (SNX9) and clathrin heavy chain (CHC) each have roles in mitosis during metaphase. Since the two proteins directly interact for their other cellular function in endocytosis we investigated whether they also interact for metaphase and operate on the same pathway. We report that SNX9 and CHC functionally interact during metaphase in a specific molecular pathway that contributes to stabilization of mitotic spindle kinetochore (K)-fibres for chromosome alignment and segregation.
View Article and Find Full Text PDFCDK-cyclin complexes regulate centriole duplication and microtubule nucleation at specific cell cycle stages, although their exact roles in these processes remain unclear. As the activities of CDK-cyclins are themselves positively regulated by CDC25 phosphatases, we investigated the role of centrosomal CDC25B during interphase. We report that overexpression of CDC25B, as is commonly found in human cancer, results in a significant increase in centrin 2 at the centrosomes of interphase cells.
View Article and Find Full Text PDFDynamin is required for clathrin-mediated endocytosis (CME). Its GTPase activity is stimulated by phospholipid binding to its PH domain, which induces helical oligomerization. We have designed a series of novel pyrimidine-based "Pyrimidyn" compounds that inhibit the lipid-stimulated GTPase activity of full length dynamin I and II with similar potency.
View Article and Find Full Text PDFBackground: During metaphase clathrin stabilises the mitotic spindle kinetochore (K)-fibres. Many anti-mitotic compounds target microtubule dynamics. Pitstop 2™ is the first small molecule inhibitor of clathrin terminal domain and inhibits clathrin-mediated endocytosis.
View Article and Find Full Text PDFFocused library development of our lead 2-cyano-3-(1-(3-(dimethylamino)propyl)-2-methyl-1H-indol-3-yl)-N-octylacrylamide (2) confirmed the tertiary dimethylamino-propyl moiety as critical for inhibition of dynamin GTPase. The cyanoamide moiety could be replaced with a thiazole-4(5H)-one isostere (19, IC(₅₀(dyn I)) = 7.7 μM), reduced under flow chemistry conditions (20, IC(₅₀(dyn I)) = 5.
View Article and Find Full Text PDFA few proteins required for clathrin-mediated endocytosis (CME) are associated with successful completion of mitosis at distinct mitotic stages. Clathrin heavy chain (CHC) and epsin are required for chromosome segregation independent of their CME function and dynamin II (dynII) functions in the abscission stage of cytokinesis. In this study we screened for mitotic roles of eight CME proteins: CHC, α-adaptin, CALM, epsin, eps15, endophilin II (edpnII), syndapin II (sdpnII) and the GTPase dynII using a small interfering RNA targeting approach.
View Article and Find Full Text PDFMitosis involves considerable membrane remodelling and vesicular trafficking to generate two independent cells. Consequently, endocytosis and endocytic proteins are required for efficient mitotic progression and completion. Several endocytic proteins also participate in mitosis in an endocytosis-independent manner.
View Article and Find Full Text PDFInhibitors of mitotic proteins such as Aurora kinase and polo-like kinase have shown promise in preclinical or early clinical development for cancer treatment. We have reported that the MiTMAB class of dynamin small molecule inhibitors are new antimitotic agents with a novel mechanism of action, blocking cytokinesis. Here, we examined 5 of the most potent of a new series of dynamin GTPase inhibitors called dynoles.
View Article and Find Full Text PDFBackground: The aim of both classical (e.g. taxol) and targeted anti-mitotic agents (e.
View Article and Find Full Text PDFBiochim Biophys Acta
October 2011
Calcineurin is a phosphatase that is activated at the last known stage of mitosis, abscission. Among its many substrates, it dephosphorylates dynamin II during cytokinesis at the midbody of dividing cells. However, dynamin II has several cellular roles including clathrin-mediated endocytosis, centrosome cohesion and cytokinesis.
View Article and Find Full Text PDFThe endocytic protein dynamin II (dynII) participates in cell cycle progression and has roles in centrosome cohesion and cytokinesis. We have described a series of small-molecule inhibitors of dynamin [myristyl trimethyl ammonium bromides (MiTMAB)] that competitively interfere with the ability of dynamin to bind phospholipids and prevent receptor-mediated endocytosis. We now report that dynII functions specifically during the abscission phase of cytokinesis and that MiTMABs exclusively block this step in the cell cycle.
View Article and Find Full Text PDFSuccessful completion of cytokinesis requires the spatio-temporal regulation of protein phosphorylation and the coordinated activity of protein kinases and phosphatases. Many mitotic protein kinases are well characterized while mitotic phosphatases are largely unknown. Here, we show that the Ca(2+)- and calmodulin-dependent phosphatase, calcineurin (CaN), is required for cytokinesis in mammalian cells, functioning specifically at the abscission stage.
View Article and Find Full Text PDFScreening identified two bisindolylmaleimides as 100 microM inhibitors of the GTPase activity of dynamin I. Focused library approaches allowed development of indole-based dynamin inhibitors called dynoles. 100-Fold in vitro enhancement of potency was noted with the best inhibitor, 2-cyano-3-(1-(2-(dimethylamino)ethyl)-1H-indol-3-yl)-N-octylacrylamide (dynole 34-2), a 1.
View Article and Find Full Text PDF