Advancements in materials synthesis have been key to unveil the quantum nature of electronic properties in solids by providing experimental reference points for a correct theoretical description. Here, we report hidden transport phenomena emerging in the ultraclean limit of the archetypical correlated electron system SrVO. The low temperature, low magnetic field transport was found to be dominated by anisotropic scattering, whereas, at high temperature, we find a yet undiscovered phase that exhibits clear deviations from the expected Landau Fermi liquid, which is reminiscent of strange-metal physics in materials on the verge of a Mott transition.
View Article and Find Full Text PDFStrongly correlated electronic systems exhibit a wealth of unconventional behavior stemming from strong electron-electron interactions. The LaAlO/SrTiO (LAO/STO) heterostructure supports rich and varied low-temperature transport characteristics including low-density superconductivity, and electron pairing without superconductivity for which the microscopic origins is still not understood. LAO/STO also exhibits inexplicable signatures of electronic nematicity via nonlinear and anomalous Hall effects.
View Article and Find Full Text PDFQuantum materials (QMs) with strong correlation and nontrivial topology are indispensable to next-generation information and computing technologies. Exploitation of topological band structure is an ideal starting point to realize correlated topological QMs. Here, we report that strain-induced symmetry modification in correlated oxide SrNbO thin films creates an emerging topological band structure.
View Article and Find Full Text PDFThe quest to understand, design, and synthesize new forms of quantum matter guides much of contemporary research in condensed matter physics. One-dimensional (1D) electronic systems form the basis for some of the most interesting and exotic phases of quantum matter. Here, we describe a family of quasi-1D nanostructures, based on LaAlO/SrTiO electron waveguides, in which a sinusoidal transverse spatial modulation is imposed.
View Article and Find Full Text PDFOne-dimensional electronic systems can support exotic collective phases because of the enhanced role of electron correlations. We describe the experimental observation of a series of quantized conductance steps within strongly interacting electron waveguides formed at the lanthanum aluminate-strontium titanate (LaAlO/SrTiO) interface. The waveguide conductance follows a characteristic sequence within Pascal's triangle: (1, 3, 6, 10, 15, …) ⋅ , where is the electron charge and is the Planck constant.
View Article and Find Full Text PDFSrTiO-based heterointerfaces support quasi-two-dimensional (2D) electron systems that are analogous to III-V semiconductor heterostructures, but also possess superconducting, magnetic, spintronic, ferroelectric, and ferroelastic degrees of freedom. Despite these rich properties, the relatively low mobilities of 2D complex-oxide interfaces appear to preclude ballistic transport in 1D. Here we show that the 2D LaAlO/SrTiO interface can support quantized ballistic transport of electrons and (nonsuperconducting) electron pairs within quasi-1D structures that are created using a well-established conductive atomic-force microscope (c-AFM) lithography technique.
View Article and Find Full Text PDF