Publications by authors named "Megan Blacker"

Introduction: Nanoscale perfluorocarbon (PFC) droplets have been used to create imaging agents and drug delivery vehicles. However, development and characterization of new formulations of PFC droplets are hindered because of the lack of simple methods for quantitative and sensitive assessment of whole body tissue distribution and pharmacokinetics of the droplets. To address this issue, a general-purpose method for radiolabeling the inner core of nanoscale perfluorocarbon droplets with a hydrophobic and lipophobic fluorine-18 compound was developed, so that positron emission tomography (PET) and quantitative biodistribution studies can be employed to evaluate PFC nanodroplets in vivo.

View Article and Find Full Text PDF

Introduction: Deferoxamine (DFO) is a siderophore that bacteria use to scavenge iron and could serve as a targeting vector to image bacterial infection where current techniques have critical limitations. [Ga]-DFO, which is a mimetic of the corresponding iron complex, is taken up by bacteria in culture, however in vivo it clears too rapidly to allow for imaging of infection. In response, we developed several new DFO derivatives to identify those that accumulate in bacteria, and at sites of infection, and that could potentially have improved pharmacokinetics.

View Article and Find Full Text PDF

A convenient strategy to radiolabel a hydrazinonicotonic acid (HYNIC)-derived tetrazine with 99mTc was developed, and its utility for creating probes to image bone metabolism and bacterial infection using both active and pretargeting strategies was demonstrated. The 99mTc-labelled HYNIC-tetrazine was synthesized in 75% yield and exhibited high stability in vitro and in vivo. A trans-cyclooctene (TCO)-labelled bisphosphonate (TCO-BP) that binds to regions of active calcium metabolism was used to evaluate the utility of the labelled tetrazine for bioorthogonal chemistry.

View Article and Find Full Text PDF

A convenient method to prepare radioiodinated tetrazines was developed, such that a bioorthogonal inverse electron demand Diels-Alder reaction can be used to label biomolecules with iodine-125 for in vitro screening and in vivo biodistribution studies. The tetrazine was prepared by employing a high-yielding oxidative halo destannylation reaction that concomitantly oxidized the dihydrotetrazine precursor. The product reacts quickly and efficiently with trans-cyclooctene derivatives.

View Article and Find Full Text PDF

A convenient emulsion-based labeling method was used to synthesize fluorine-18-labeled insulin specifically B(1)-(4-[(18)F]fluorobenzoyl)insulin ((18)F-4b) in 6% overall radiochemical yield in 240 min. In vitro screening in MCF7 breast cancer cells demonstrated that the nonradioactive analogue (19)F-4a effectively competed with (125)I-insulin for the insulin receptor (IC50 = 10.6 nM) comparable to that for insulin (IC50 = 7.

View Article and Find Full Text PDF

The synthesis, radiolabelling and biodistribution of iodinated C-hydroxy-nido-carborane ligands is described. Microwave heating by using NaF in aqueous ethanol was used to prepare {sodium [7-hydroxy-7,8-dicarba-nido-undecaborate], nido-carboranol} and {sodium [7-hydroxy-7,8-dicarba-nido-undecaborate-8-carboxylic acid], nido-salborin} in 97 and 90 % yield, respectively. Radioiodination of these nido-carboranes was completed by using both (125)I and (123)I, and the products were obtained in high radiochemical purity (>99 %) and yield (72 to 87 %).

View Article and Find Full Text PDF

A new prosthetic group referred to as the triazole appending agent (TAAG) was developed as a means to prepare targeted radioiodine-based molecular imaging and therapy agents. Tributyltin-TAAG and the fluorous analogue were synthesized in high yield using simple click chemistry and the products labeled in greater than 95% RCY with (123)I. A TAAG derivative of an inhibitor of prostate-specific membrane antigen was prepared and radiolabeled with (123)I in 85% yield where biodistribution studies in LNCap prostate cancer tumor models showed rapid clearance of the agent from nontarget tissues and tumor accumulation of 20% injected dose g(-1) at 1 h.

View Article and Find Full Text PDF

The cytotoxicity of extracellular amyloid beta peptide (Abeta) has been clearly demonstrated in many cell types. In contrast, primary human neurons in culture are resistant to extracellular Abeta-mediated toxicity. Here, we investigate the involvement of p75 neurotrophin receptor (p75NTR) in Abeta-treated human neurons.

View Article and Find Full Text PDF

Tumor necrosis factor-alpha (TNF-alpha) is implicated in inflammatory processes and much effort is being directed at inhibiting the release of TNF-alpha for treatment of inflammatory conditions. In this context, the drug CP-661,631 has been developed to inhibit the TNF-alpha converting enzyme (TACE). However, TACE is also implicated in amyloid precursor protein secretion.

View Article and Find Full Text PDF