Publications by authors named "Megan Basila"

While the CRISPR-Cas9 system from S. pyogenes is a powerful genome engineering tool, additional programmed nucleases would enable added flexibility in targeting space and multiplexing. Here, we characterized a CRISPR-Cas9 system from L.

View Article and Find Full Text PDF

Since its initial application in mammalian cells, CRISPR-Cas9 has rapidly become a preferred method for genome engineering experiments. The Cas9 nuclease is targeted to genomic DNA using guide RNAs (gRNA), either as the native dual RNA system consisting of a DNA-targeting CRISPR RNA (crRNA) and a trans-activating crRNA (tracrRNA), or as a chimeric single guide RNA (sgRNA). Entirely DNA-free CRISPR-Cas9 systems using either Cas9 protein or Cas9 mRNA and chemically synthesized gRNAs allow for transient expression of CRISPR-Cas9 components, thereby reducing the potential for off-targeting, which is a significant advantage in therapeutic applications.

View Article and Find Full Text PDF

Background: Heat shock protein 70 (HSP70) has gained major attention as an adjuvant capable of inducing antigen-specific CD8(+) and CD4(+) T-cell responses. The ability of HSP70/peptide complexes to elicit cytotoxic T-cell (CTL) responses by cross-presentation of exogenous antigens via HLA class I molecules is of central interest in immunotherapy. We examined the role of HSP70/CMVpp65(495-503)-peptide complex (HSP70/CMV-PC) in HLA class I-restricted cross-presentation for ex vivo expansion of CMV-specific CTLs.

View Article and Find Full Text PDF