Publications by authors named "Megan Baldridge"

Objective: This study aimed to evaluate pain metrics and gut microbiota differences from human subjects with complex regional pain syndrome (CRPS) compared to cohabitants (HHC) and non-cohabitating (biobank) controls. In addition, we aimed evaluate longitudinal changes of gut microbiota using a mouse model of acute and chronic CRPS.

Methods: In an observational, cross-sectional study, 25 patients with CRPS and 24 household controls (HHC) were recruited, completed pain questionnaires, and submitted stool samples.

View Article and Find Full Text PDF

The gut microbiota has emerged as a pivotal regulator of host inflammatory processes after traumatic brain injury (TBI). However, the mechanisms by which the gut microbiota communicates to the brain in TBI are still under investigation. We previously reported that gut microbiota depletion (GMD) using antibiotics after TBI resulted in increased microglial activation, reduced neurogenesis, and reduced T cell infiltration.

View Article and Find Full Text PDF

Human astroviruses (HAstV) are major causes of gastroenteritis, especially in children, and there are no vaccines or antivirals currently available. Little is known about host factors required for their cellular entry. Here we utilized complementary CRISPR-Cas9-based knockout and activation screens to identify neonatal Fc receptor (FcRn) and dipeptidyl-peptidase IV (DPP4) as entry factors for HAstV infection in vitro.

View Article and Find Full Text PDF

Prolonged antibiotic exposure causes dangerous hematologic side effects, including neutropenia, in up to 34% of patients. Murine studies established a link between the intestinal microbiota and hematopoiesis. To identify factors that predispose to neutropenia in pediatric patients, we evaluated changes in microbiota-derived metabolites and intestinal microbiota composition after prolonged courses of antibiotics.

View Article and Find Full Text PDF

Rotaviruses pose a significant threat to young children. To identify novel pro- and anti-rotavirus host factors, we performed genome-wide CRISPR/Cas9 screens using rhesus rotavirus and African green monkey cells. Genetic deletion of either SERPINB1 or TMEM236, the top two antiviral factors, in MA104 cells increased virus titers in a rotavirus strain independent manner.

View Article and Find Full Text PDF

Increasing evidence points to the microbial exposome as a critical factor in maturing and shaping the host immune system, thereby influencing responses to immune challenges such as infections or vaccines. To investigate the effect of early-life viral exposures on immune development and vaccine responses, we inoculated mice with six distinct viral pathogens in sequence beginning in the neonatal period, and then evaluated their immune signatures before and after intramuscular or intranasal vaccination against SARS-CoV-2. Sequential viral infection drove profound changes in all aspects of the immune system, including increasing circulating leukocytes, altering innate and adaptive immune cell lineages in tissues, and markedly influencing serum cytokine and total antibody levels.

View Article and Find Full Text PDF

Harnessing the microbiome to benefit human health requires an initial step in determining the identity and function of causative microorganisms that affect specific host physiological functions. We show a functional screen of the bacterial microbiota from mice with low intestinal immunoglobulin A (IgA) levels; we identified a Gram-negative bacterium, proposed as , that induces and degrades IgA in the mouse intestine. Mice harboring are susceptible to infections and show poor mucosal repair.

View Article and Find Full Text PDF
Article Synopsis
  • Paramyxoviruses like mumps virus, Newcastle disease virus, and Sendai virus are important pathogens, but not much is known about the host factors that help them infect cells.
  • A study using CRISPR technology discovered that two genes, CST and UGT, are crucial for these viruses to infect cells, as knocking them out results in reduced viral binding.
  • The UGT gene specifically aids in virus-cell fusion during Sendai virus entry and helps form larger syncytia (cell clusters) during mumps virus infection, indicating it plays a role in how these viruses spread between cells.
View Article and Find Full Text PDF

Arteriviruses infect a variety of mammalian hosts, but the receptors used by these viruses to enter cells are poorly understood. We identified the neonatal Fc receptor (FcRn) as an important pro-viral host factor via comparative genome-wide CRISPR-knockout screens with multiple arteriviruses. Using a panel of cell lines and divergent arteriviruses, we demonstrate that FcRn is required for the entry step of arterivirus infection and serves as a molecular barrier to arterivirus cross-species infection.

View Article and Find Full Text PDF

Unlabelled: Human astroviruses (HAstV) are major global causes of gastroenteritis, but little is known about host factors required for their cellular entry. Here, we utilized complementary CRISPR-Cas9-based knockout and activation screening approaches and identified neonatal Fc receptor (FcRn) and dipeptidyl-peptidase IV (DPP4) as entry factors for HAstV infection of human intestinal epithelial cells. Disruption of FcRn or DPP4 reduced HAstV infection in permissive cells and, reciprocally, overexpression of these factors in non-permissive cells was sufficient to promote infection.

View Article and Find Full Text PDF

Interferons (IFNs) are an integral component of the host innate immune response during viral infection. Recent advances in the study of type I and III IFNs suggest that though both types counteract viral infection, type III IFNs act predominantly at epithelial barrier sites, while type I IFNs drive systemic responses. The dynamics and specific roles of type I versus III IFNs have been studied in the context of infection by a variety of enteric pathogens, including reovirus, rotavirus, norovirus, astrovirus, and intestinal severe acute respiratory syndrome coronavirus 2, revealing shared patterns of regulatory influence.

View Article and Find Full Text PDF
Article Synopsis
  • * A study identified changes in intestinal microbiota and metabolites in patients who developed neutropenia after antibiotic treatment; this disruption may affect blood cell production.
  • * No link was found between neutropenia and the type of infection or antibiotic used, but factors like ICU admission and longer treatment duration were associated with increased risk.
View Article and Find Full Text PDF

Noroviruses (NoVs) are a leading cause of viral gastroenteritis. Despite global clinical relevance, our understanding of how host factors, such as antiviral cytokines interferons (IFNs), modulate NoV population dynamics is limited. Murine NoV (MNoV) is a tractable in vivo model for the study of host regulation of NoV.

View Article and Find Full Text PDF

In this issue of Cell Host & Microbe, Carasso et al. survey invertible DNA sites in Bacteroidales from patients with inflammatory bowel disease (IBD) and healthy control individuals. They identify complex functional interactions between Bacteroides fragilis, an invertible promoter, a capsular polysaccharide, a bacteriophage, and the human host.

View Article and Find Full Text PDF

Intestinal intraepithelial lymphocytes (IELs) exhibit prompt innate-like responses to microenvironmental cues and require strict control of effector functions. Here we showed that Aiolos, an Ikaros zinc-finger family member encoded by Ikzf3, acted as a regulator of IEL activation. Ikzf3 CD8αα IELs had elevated expression of NK receptors, cytotoxic enzymes, cytokines and chemokines.

View Article and Find Full Text PDF

Norovirus is a leading cause of epidemic viral gastroenteritis, with no currently approved vaccines or antivirals. Murine norovirus (MNoV) is a well-characterized model of norovirus pathogenesis in vivo, and persistent strains exhibit lifelong intestinal infection. Interferon-λ (IFN-λ) is a potent antiviral that rapidly cures MNoV.

View Article and Find Full Text PDF
Article Synopsis
  • The microbial exposome is essential for developing the immune system and affects how the body reacts to infections and vaccines.
  • Researchers conducted a study on mice, exposing them to six different viral pathogens early in life and evaluating their immune responses after vaccination for SARS-CoV-2.
  • Findings revealed that while these early viral exposures enhanced some immune responses, they also led to reduced antibody production following vaccination, indicating that previous viral exposures can significantly impact vaccine effectiveness.
View Article and Find Full Text PDF

Cryptosporidiosis is a leading cause of life-threatening diarrhea in young children in resource-poor settings. To explore microbial influences on susceptibility, we screened 85 microbiota-associated metabolites for their effects on Cryptosporidium parvum growth in vitro. We identify eight inhibitory metabolites in three main classes: secondary bile salts/acids, a vitamin B precursor, and indoles.

View Article and Find Full Text PDF

Cryptosporidiosis is a leading cause of life-threatening diarrhea in young children in resource-poor settings. Susceptibility rapidly declines with age, associated with changes in the microbiota. To explore microbial influences on susceptibility, we screened 85 microbiota- associated metabolites enriched in the adult gut for their effects on growth in vitro.

View Article and Find Full Text PDF

Norovirus (NoV) is the leading global cause of viral gastroenteritis. Young children bear the highest burden of disease and play a key role in viral transmission throughout the population. However, which host factors contribute to age-associated variability in NoV severity and shedding are not well-defined.

View Article and Find Full Text PDF

Chemosensory epithelial tuft cells contribute to innate immunity at barrier surfaces, but their differentiation from epithelial progenitors is not well understood. Here, we exploited differences between inbred mouse strains to identify an epithelium-intrinsic mechanism that regulates tuft cell differentiation and tunes innate type 2 immunity in the small intestine. Balb/cJ (Balb) mice had fewer intestinal tuft cells than C57BL/6J (B6) mice and failed to respond to the tuft cell ligand succinate.

View Article and Find Full Text PDF

Noroviruses are the leading cause of severe childhood diarrhea and foodborne disease worldwide. While they are a major cause of disease in all age groups, infections in the very young can be quite severe, with annual estimates of 50,000-200,000 fatalities in children under 5 years old. In spite of the remarkable disease burden associated with norovirus infections, very little is known about the pathogenic mechanisms underlying norovirus diarrhea, principally because of the lack of tractable small animal models.

View Article and Find Full Text PDF

The mammalian gastrointestinal tract (GIT) hosts a diverse and highly active microbiota composed of bacteria, eukaryotes, archaea, and viruses. Studies of the GIT microbiota date back more than a century, although modern techniques, including mouse models, sequencing technology, and novel therapeutics in humans, have been foundational to our understanding of the roles of commensal microbes in health and disease. Here, we review the impacts of the GIT microbiota on viral infection, both within the GIT and systemically.

View Article and Find Full Text PDF

The extent and diversity of exposures to microbial stimuli have a crucial role in regulating the capacity of a host to mount an immune response to a challenge, such as vaccination, making exposure history an important factor to optimize in rodent models.

View Article and Find Full Text PDF

Noroviruses are the leading cause of severe childhood diarrhea and foodborne disease worldwide. While they are a major cause of disease in all age groups, infections in the very young can be quite severe with annual estimates of 50,000-200,000 fatalities in children under 5 years old. In spite of the remarkable disease burden associated with norovirus infections in people, very little is known about the pathogenic mechanisms underlying norovirus diarrhea, principally because of the lack of tractable small animal models.

View Article and Find Full Text PDF