Publications by authors named "Meeus T"

The cocoa pod borer (CPB) Conopomorpha cramerella (Snellen) (Lepidoptera: Gracillaridae) is one of the major constraints for cocoa production in South East Asia. In addition to cultural and chemical control methods, autocidal control tactics such as the Sterile Insect Technique (SIT) could be an efficient addition to the currently control strategy, however SIT implementation will depend on the population genetics of the targeted pest. The aim of the present work was to search for suitable microsatellite loci in the genome of CPB that is partially sequenced.

View Article and Find Full Text PDF
Article Synopsis
  • Tsetse flies transmit harmful trypanosomes that cause Human African Trypanosomiasis in sub-Saharan Africa, leading to disease in both humans and livestock.
  • A control program was initiated in Maro, Chad in 2018 to reduce the tsetse fly population, specifically targeting the species Glossina fuscipes fuscipes.
  • Genetic analysis revealed that while most flies were local, some had different genetic profiles, indicating ongoing gene flow and suggesting that control efforts may have had limited effectiveness; continuous monitoring is advised, especially near the border with the Central African Republic.
View Article and Find Full Text PDF

African trypanosomoses, whose pathogens are transmitted by tsetse flies, are a threat to animal and human health. Tsetse flies observed at the military base of the French Forces in Côte d'Ivoire (FFCI base) were probably involved in the infection and death of military working dogs. Entomological and parasitological surveys were carried out during the rainy and dry seasons using "Vavoua" traps to identify tsetse fly species, their distribution, favorable biotopes and food sources, as well as the trypanosomes they harbor.

View Article and Find Full Text PDF

Tsetse flies, the vectors of African trypanosomes are of key medical and economic importance and one of the constraints for the development of Africa. Tsetse fly control is one of the most effective and sustainable strategies used for controlling the disease. Knowledge about population structure and level of gene flow between neighbouring populations of the target vector is of high importance to develop appropriate strategies for implementing effective management programmes.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated the potential animal reservoir of Trypanosoma brucei gambiense, responsible for human African trypanosomiasis, in pigs and humans in a historical focus area of the disease in Vavoua.
  • Among 345 people tested, no HAT cases were found, but a high infection rate was observed in free-ranging pigs, with over 70% testing positive for various trypanosome species, particularly T. brucei.
  • The findings suggest free-ranging pigs may serve as a multi-reservoir for trypanosomes, complicating detection efforts for T. b. gambiense, indicating a need for better research tools to understand animal roles in HAT transmission.
View Article and Find Full Text PDF

Despite their role in Leishmania transmission, little is known about the organization of sand fly populations in their environment. Here, we used 11 previously described microsatellite markers to investigate the population genetic structure of Phlebotomus ariasi, the main vector of Leishmania infantum in the region of Montpellier (South of France). From May to October 2011, we captured 1,253 Ph.

View Article and Find Full Text PDF

Microsatellite loci still represent valuable resources for the study of the population biology of non-model organisms. Discovering or adapting new suitable microsatellite markers in species of interest still represents a useful task, especially so for non-model organisms as tsetse flies (genus Glossina), which remain a serious threat to the health of humans and animals in sub-Saharan Africa. In this paper, we present the development of new microsatellite loci for four species of Glossina: two from the Morsitans group, G.

View Article and Find Full Text PDF

Trypanosoma brucei causes human African trypanosomiasis (HAT). Three subspecies were described: T. b.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on Glossina palpalis palpalis, the major vector for sleeping sickness in Côte d'Ivoire, particularly in the Bonon and Sinfra regions where the disease is still present at low levels.
  • - Researchers explored how a control campaign impacted the genetic population structure of G. p. palpalis before and after the campaign, noting high effective population size and limited dispersal distances prior to treatment.
  • - Findings indicated potential trap avoidance behavior in G. p. palpalis and highlighted the importance of understanding genetic reinvasion from neighboring areas to improve the sustainability of future control efforts.
View Article and Find Full Text PDF

Tsetse flies are vectors of parasites that cause diseases responsible for significant economic losses and health issues in sub-Saharan Africa, including sleeping sickness in humans and nagana in domestic animals. Efficient vector-control campaigns require good knowledge of the demographic parameters of the targeted populations. In the last decade, population genetics emerged as a convenient way to measure population densities and dispersal in tsetse flies.

View Article and Find Full Text PDF

Population genetics is a convenient tool to study the population biology of non-model and hard to sample species. This is particularly true for parasites and vectors. Heterozygote deficits and/or linkage disequilibrium often occur in such studies and detecting the origin of those (Wahlund effect, reproductive system or amplification problems) is uneasy.

View Article and Find Full Text PDF

Null alleles and Wahlund effects are well known causes of heterozygote deficits in empirical population genetics studies as compared to Hardy-Weinberg genotypic expectations. Some authors have theoretically studied the relationship of Wright's FIS computed from subsamples displaying a Wahlund effect and FST before the Wahlund effect, as can occasionally be obtained from populations of long-lived organisms. In the 2 subsample case, a positive relationship between these 2 parameters across loci would represent a signature of Wahlund effects.

View Article and Find Full Text PDF

Background: Important control efforts have led to a significant reduction of the prevalence of human African trypanosomiasis (HAT) in Côte d'Ivoire, but the disease is still present in several foci. The existence of an animal reservoir of Trypanosoma brucei gambiense may explain disease persistence in these foci where animal breeding is an important source of income but where the prevalence of animal African trypanosomiasis (AAT) is unknown. The aim of this study was to identify the trypanosome species circulating in domestic animals in both Bonon and Sinfra HAT endemic foci.

View Article and Find Full Text PDF

Antagonistic interactions between hosts and parasites are key structuring forces in natural populations. Demographic factors like extinction, migration and the effective population size shape host-parasite metapopulational dynamics. Therefore, to understand the evolution of host-parasite systems it is necessary to study the distribution of the genetic variation of both entities simultaneously.

View Article and Find Full Text PDF

Studying isolation by distance can provide useful demographic information. To analyze isolation by distance from molecular data, one can use some kind of genetic distance or coalescent simulations. Molecular markers can often display technical caveats, such as PCR-based amplification failures (null alleles, allelic dropouts).

View Article and Find Full Text PDF

One key process of the life cycle of pathogens is their mode of reproduction. Indeed, this fundamental biological process conditions the multiplication and the transmission of genes and thus the propagation of diseases in the environment. Reproductive strategies of protozoan parasites have been a subject of debate for many years, principally due to the difficulty in making direct observations of sexual reproduction (i.

View Article and Find Full Text PDF

Progress in malaria control has led to a significant reduction of the malaria burden. Interventions that interrupt transmission are now needed to achieve the elimination goal. Transmission-blocking vaccines (TBV) that aim to prevent mosquito infections represent promising tools and several vaccine candidates targeting different stages of the parasite's lifecycle are currently under development.

View Article and Find Full Text PDF

Evolutionary theory predicts that the lack of recombination and chromosomal re-assortment in strictly asexual organisms results in homologous chromosomes irreversibly accumulating mutations and thus evolving independently of each other, a phenomenon termed the Meselson effect. We apply a population genomics approach to examine this effect in an important human pathogen, Trypanosoma brucei gambiense. We determine that T.

View Article and Find Full Text PDF

Tsetse flies are the cyclical vectors of deadly human and animal trypanosomes in sub-Saharan Africa. Tsetse control is a key component for the integrated management of both plagues, but local eradication successes have been limited to less than 2% of the infested area. This is attributed to either resurgence of residual populations that were omitted from the eradication campaign or reinvasion from neighboring infested areas.

View Article and Find Full Text PDF

Trypanosomatidae are a dangerous family of Euglenobionta parasites that threaten the health and economy of millions of people around the world. More precisely describing the population biology and reproductive mode of such pests is not only a matter of pure science, but can also be useful for understanding parasite adaptation, as well as how parasitism, specialization (parasite specificity), and complex life cycles evolve over time. Studying this parasite's reproductive strategies and population structure can also contribute key information to the understanding of the epidemiology of associated diseases; it can also provide clues for elaborating control programs and predicting the probability of success for control campaigns (such as vaccines and drug therapies), along with emergence or re-emergence risks.

View Article and Find Full Text PDF