Structural alterations in DNA can serve as natural impediments to replication fork stability and progression, resulting in DNA damage and genomic instability. Naturally occurring polypurine mirror repeat sequences in the human genome can create endogenous triplex structures evoking a robust DNA damage response. Failures to recognize or adequately process these genomic lesions can result in loss of genomic integrity.
View Article and Find Full Text PDFTriplex structures generated by sequence-specific triplex-forming oligonucleotides (TFOs) have proven to be promising tools for gene targeting strategies. In addition, triplex technology has been highly utilized to study the molecular mechanisms of DNA repair, recombination and mutagenesis. However, triplex formation utilizing guanine-rich oligonucleotides as third strands can be inhibited by potassium-induced self-association resulting in G-quadruplex formation.
View Article and Find Full Text PDFCellular DNA damage response is critical to preserving genomic integrity following exposure to genotoxic stress. A complex series of networks and signaling pathways become activated after DNA damage and trigger the appropriate cellular response, including cell cycle arrest, DNA repair, and apoptosis. The response elicited is dependent upon the type and extent of damage sustained, with the ultimate goal of preventing propagation of the damaged DNA.
View Article and Find Full Text PDFNucleic Acids Res
October 2013
DNA sequences capable of forming triplexes are prevalent in the human genome and have been found to be intrinsically mutagenic. Consequently, a balance between DNA repair and apoptosis is critical to counteract their effect on genomic integrity. Using triplex-forming oligonucleotides to synthetically create altered helical distortions, we have determined that pro-apoptotic pathways are activated by the formation of triplex structures.
View Article and Find Full Text PDFAnemia because of insufficient production of and/or response to erythropoietin (Epo) is a major complication of chronic kidney disease and cancer. The mechanisms modulating the sensitivity of erythroblasts to Epo remain poorly understood. We show that, when cultured with Epo at suboptimal concentrations, the growth and clonogenic potential of erythroblasts was rescued by transferrin receptor 1 (TfR1)-bound polymeric IgA1 (pIgA1).
View Article and Find Full Text PDF