Publications by authors named "Meerim Choi"

The E. coli single-stranded DNA-binding protein (SSB) binds to the fork DNA helicases RecG and PriA in vitro. Typically for binding to occur, 1.

View Article and Find Full Text PDF

RecG and RuvAB are proposed to act at stalled DNA replication forks to facilitate replication restart. To clarify the roles of these proteins in fork regression, we used a coupled spectrophotometric ATPase assay to determine how these helicases act on two groups of model fork substrates: the first group mimics nascent stalled forks, whereas the second mimics regressed fork structures. The results show that RecG is active on the substrates in group 1, whereas these are poor substrates for RuvAB.

View Article and Find Full Text PDF

Pluripotent stem cell markers can be useful for diagnostic evaluation of human tumors. The novel pluripotent marker stage-specific embryonic antigen-5 (SSEA-5) is expressed in undifferentiated human induced pluripotent cells (iPSCs), but little is known about SSEA-5 expression in other primitive tissues (e.g.

View Article and Find Full Text PDF

The Escherichia coli single-stranded DNA binding protein (SSB) is a central player in DNA metabolism where it organizes genome maintenance complexes and stabilizes single-stranded DNA (ssDNA) intermediates generated during DNA processing. Due to the importance of SSB and to facilitate real-time studies, we developed a dual plasmid expression system to produce novel, chimeric SSB proteins. These chimeras, which contain mixtures of histidine-tagged and fluorescent protein(FP)-fusion subunits, are easily purified in milligram quantities and used without further modification, a significant enhancement over previous methods to produce fluorescent SSB.

View Article and Find Full Text PDF