Modeling communication dynamics in the brain is a key challenge in network neuroscience. We present here a framework that combines two measurements for any system where different communication processes are taking place on top of a fixed structural topology: path processing score (PPS) estimates how much the brain signal has changed or has been transformed between any two brain regions (source and target); path broadcasting strength (PBS) estimates the propagation of the signal through edges adjacent to the path being assessed. We use PPS and PBS to explore communication dynamics in large-scale brain networks.
View Article and Find Full Text PDFThe identifiability framework (𝕀) has been shown to improve differential identifiability (reliability across-sessions and -sites, and differentiability across-subjects) of functional connectomes for a variety of fMRI tasks. But having a robust single session/subject functional connectome is just the starting point to subsequently assess network properties for characterizing properties of integration, segregation, and communicability, among others. Naturally, one wonders whether uncovering identifiability at the connectome level also uncovers identifiability on the derived network properties.
View Article and Find Full Text PDFIt has been well established that Functional Connectomes (FCs), as estimated from functional MRI (fMRI) data, have an individual fingerprint that can be used to identify an individual from a population (subject-identification). Although identification rate is high when using resting-state FCs, other tasks show moderate to low values. Furthermore, identification rate is task-dependent, and is low when distinct cognitive states, as captured by different fMRI tasks, are compared.
View Article and Find Full Text PDF