Publications by authors named "Meenakumari Muthuramalingam"

, causative agent of bacillary dysentery (shigellosis), uses a type III secretion system (T3SS) as its primary virulence factor. The T3SS injectisome delivers effector proteins into host cells to promote entry and create an important intracellular niche. The injectisome's cytoplasmic sorting platform (SP) is a critical assembly that contributes to substrate selection and energizing secretion.

View Article and Find Full Text PDF

comprises four species of human-restricted pathogens causing bacillary dysentery. While possesses multiple genetic loci contributing to virulence, a type III secretion system (T3SS) is its primary virulence factor. The T3SS nanomachine consists of four major assemblies: the cytoplasmic sorting platform; the envelope-spanning core/basal body; an exposed needle; and a needle-associated tip complex with associated translocon that is inserted into host cell membranes.

View Article and Find Full Text PDF

Many Gram-negative bacterial pathogens use type III secretion systems (T3SS) to inject proteins into eukaryotic cells to subvert normal cellular functions. The T3SS apparatus (injectisome) shares a common architecture in all systems studied thus far, comprising three major components - the cytoplasmic sorting platform, envelope-spanning basal body and external needle with tip complex. The sorting platform consists of an ATPase (SctN) connected to "pods" (SctQ) having six-fold symmetry via radial spokes (SctL).

View Article and Find Full Text PDF

Many Gram-negative bacteria use type III secretion systems (T3SSs) to inject virulence effector proteins into eukaryotic cells. The T3SS apparatus (T3SA) is structurally conserved among diverse bacterial pathogens and consists of a cytoplasmic sorting platform, an envelope-spanning basal body, and an extracellular needle with tip complex. The sorting platform is essential for effector recognition and powering secretion.

View Article and Find Full Text PDF

Toxin-antitoxin (TA) systems are found on both chromosomes and plasmids. These systems are unique in that they can confer both fatal and protective effects on bacterial cells-a quality that could potentially be harnessed given further understanding of these TA mechanisms. The current work focuses on the ParE subfamily, which is found throughout proteobacteria and has a sequence identity on average of approximately 12% (similarity at 30%-80%).

View Article and Find Full Text PDF

Type III secretion systems are used by many Gram-negative bacteria to inject effector proteins into eukaryotic cells to subvert their normal activities. Structurally conserved portions of the type III secretion apparatus include a: basal body located within the bacterial envelope; an exposed needle with tip complex that delivers effectors across the target cell membrane; and cytoplasmic sorting platform that selects cargo and powers secretion. While structurally conserved, the individual proteins that make up this nanomachine are typically not interchangeable though they do tend to fall into families.

View Article and Find Full Text PDF

Toxin-antitoxin systems are mediators of diverse activities in bacterial physiology. For the ParE-type toxins, their reported role of gyrase inhibition utilized during plasmid-segregation killing indicates they are toxic. However, their location throughout chromosomes leads to questions about function, including potential non-toxic outcomes.

View Article and Find Full Text PDF

Bacterial type III secretion systems (T3SS) are used to inject proteins into mammalian cells to subvert cellular functions. The Shigella T3SS apparatus (T3SA) is comprised of a basal body, cytoplasmic sorting platform and exposed needle with needle "tip complex" (TC). TC maturation occurs when the translocator protein IpaB is recruited to the needle tip where both IpaD and IpaB control secretion induction.

View Article and Find Full Text PDF

Toxin-antitoxin (TA) modules are bacterial regulatory switches that facilitate conflicting outcomes for cells by promoting a pro-survival phenotypic adaptation and/or by directly mediating cell death, all through the toxin activity upon degradation of antitoxin. Intensive study has revealed specific details of TA module functions, but significant gaps remain about the molecular details of activation via antitoxin degradation used by different bacteria and in different environments. This review summarizes the current state of knowledge about the interaction of antitoxins with cellular proteases Lon and ClpP to mediate TA module activation.

View Article and Find Full Text PDF

Arabidopsis nudix hydrolase 7 (AtNudt7) plays an important role in regulating redox homeostasis during stress/defense signaling and seed germination. The early responsiveness of AtNudt7 provides a useful marker especially during oxidative cell death in plants. Nuclear run-on assays demonstrate that AtNudt7 is transcriptionally regulated.

View Article and Find Full Text PDF

Background: Efficient light acclimation of photosynthetic cells is a basic and important property of plants. The process of acclimation depends on transformation of retrograde signals in gene expression, transcript accumulation and de novo protein synthesis. While signalling cues, transcriptomes and some involved players have been characterized, an integrated view is only slowly emerging, and information on the translational level is missing.

View Article and Find Full Text PDF

Hydrogen peroxide (H2O2) evolves during cellular metabolism and accumulates under various stresses causing serious redox imbalances. Many proteomics studies aiming to identify proteins sensitive to H2O2 used concentrations that were above the physiological range. Here the chloroplast proteins were subjected to partial oxidation by exogenous addition of H2O2 equivalent to 10% of available protein thiols which allowed for the identification of the primary targets of oxidation.

View Article and Find Full Text PDF

Plant cells sense, weigh and integrate various endogenous and exogenous cues in order to optimize acclimation and resource allocation. The thiol/disulfide redox network appears to be in the core of this versatile integration process. In plant cells its complexity exceeds by far that of other organisms.

View Article and Find Full Text PDF

Unlike thioredoxins, glutaredoxins are involved in iron-sulfur cluster assembly and in reduction of specific disulfides (i.e. protein-glutathione adducts), and thus they are also important redox regulators of chloroplast metabolism.

View Article and Find Full Text PDF

Abiotic stresses often cause metabolic imbalances which affect cellular redox homeostasis and alter the rate of reduction state of functional and regulatory protein thiols and the rate of reactive oxygen species release. Excessive displacement from redox equilibrium causes oxidative damage to cell structures and may elicit cell death. The understanding of the cell response to progressive stress must include knowledge on the thiol redox state of specific proteins.

View Article and Find Full Text PDF

In plants, the highly abundant 2-cysteine peroxiredoxin (2-CysPrx) is associated with the chloroplast and involved in protecting photosynthesis. This work addresses the multiple interactions of the 2-CysPrx in the chloroplast, which depend on its redox state. Transcript co-regulation analysis showed a strong linkage to the peptidyl-prolyl-cis/trans isomerase Cyclophilin 20-3 (Cyp20-3) and other components of the photosynthetic apparatus.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session48u7m239ot69joodoe3db6aivbfc6sub): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once