Trehalose serves as a primary circulatory sugar in insects which is crucial in energy metabolism and stress recovery. It is hydrolyzed into two glucose molecules by trehalase. Silencing or inhibiting trehalase results in reduced fitness, developmental defects, and insect mortality.
View Article and Find Full Text PDFTrehalose is synthesized in insects through the trehalose 6-phosphate synthase and phosphatase (TPS/TPP) pathway. TPP dephosphorylates trehalose 6-phosphate to release trehalose. Trehalose is involved in metamorphosis, but its relation with body weight, size, and developmental timing is unexplored.
View Article and Find Full Text PDFThe limited availability of effective treatment against SARS-CoV-2 infection is a major challenge in managing COVID-19. This scenario has augmented the need for repurposing anti-virals for COVID-19 mitigation. In this report, the anti-SARS-CoV-2 potential of anti-HCV drugs such as daclatasvir (DCV) or ledipasvir (LDP) in combination with sofosbuvir (SOF) was evaluated.
View Article and Find Full Text PDFTrehalose is a major circulatory sugar in the haemolymph of insects. It provides instant energy and protection against stress. Trehalose metabolism is associated with insect growth and development.
View Article and Find Full Text PDFTrehalose is a primary sugar and its distribution across the insect body, regulated by trehalose transporters (TRETs), is essential for sugar metabolism and energy homeostasis. The large diversity of Tret-like sugar transporters (ST), belonging to SLC2A transporter family, in polyphagous insects probably contributes to their extremely adaptive nature. We aim to study spatio-temporal expression dynamics and functional relevance of ST transcript variants in the lepidopteran model organism, Helicoverpa armigera.
View Article and Find Full Text PDFThe ATP-binding cassette (ABC) transporter gene family is ubiquitous in the living world. ABC proteins bind and hydrolyze ATP to transport a myriad of molecules across various lipid-containing membrane systems. They have been studied well in plants for transport of a variety of compounds and particularly, in vertebrates due to their direct involvement in resistance mechanisms against several toxic molecules/metabolites.
View Article and Find Full Text PDFa Gram-negative bacterium, causes diseases in fish, resulting in excessive loss to the aquaculture industry. is a highly heterogeneous group of bacteria, and the heterogeneity of the genus is attributed to variation and diversity in the virulence factors and toxins among various strains. One of the major toxins aerolysin, secreted by the bacterium, causes hemorrhagic-septicemia and diarrhea and can serve as a drug target.
View Article and Find Full Text PDFUnlabelled: Glucosinolates protect plants from herbivory. Lepidopteran insects have developed resistance to glucosinolates which is well studied. However, the molecular effects of glucosinolate intake on insects are unexplored.
View Article and Find Full Text PDFClan C1A or 'papain superfamily' cysteine proteases are key players in many important physiological processes and diseases in most living systems. Novel approaches towards the development of their inhibitors can open new avenues in translational medicine. Here, we report a novel design of a re-engineered chimera inhibitor Mco-cysteine protease inhibitor (CPI) to inhibit the activity of C1A cysteine proteases.
View Article and Find Full Text PDFCystatins are classical competitive inhibitors of C1 family cysteine proteases (papain family). Phytocystatin superfamily shares high sequence homology and typical tertiary structure with conserved glutamine-valine-glycine (Q-X-V-X-G) loop blocking the active site of C1 proteases. Here, we develop a cysteine-bounded cyclic peptide (CYS-cIHL) and linear peptide (CYS-IHL), using the conserved inhibitory hairpin loop amino acid sequence.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has resulted in the current COVID-19 pandemic. Worldwide this disease has infected over 2.5 million individuals with a mortality rate ranging from 5 to 10%.
View Article and Find Full Text PDFTrehalase catalyses the breakdown of trehalose into two glucose moieties and is ubiquitous in all organisms. Here, we provide insights into the enigmatic origin and evolution of trehalase in major species. Study of taxonomic distribution, orthology, phylogeny and functional domains indicated that trehalase possibly originates from bacteria and was transmitted to other taxa through horizontal gene transfer.
View Article and Find Full Text PDFThe production and accumulation of pathogenesis-related (PR) proteins in plants is one of the important responses to biotic and abiotic stress. Large number of identified PR proteins has been categorized into 17 functional families based on their structure, phylogenetics, and biological activities. However, they are not widely studied in legume crops.
View Article and Find Full Text PDF