Publications by authors named "Meenakshi Sundaram K"

Article Synopsis
  • Wound healing is crucial for restoring tissue and there's a need for better treatments, with zinc oxide nanoparticles showing potential benefits like antimicrobial and regenerative properties, combined with β-chitosan, which has superior bioactivity from squid pens.
  • The study involved extracting and characterizing β-chitosan, along with synthesizing zinc oxide nanoparticles using various advanced techniques to understand their properties and applications.
  • Adult zebrafish were used as a model to test the effectiveness of β-chitosan and zinc oxide nanoparticles in promoting wound healing, comparing the results with control groups treated with saline.
View Article and Find Full Text PDF

Introduction: This study explores the anticancer potential of Thioflavin-derived zinc nanoparticles (Th-ZnNPs) using both in vitro and in silico methods. Thioflavin, known for its specific binding properties, faces challenges such as bioavailability, rapid metabolism, and solubility. To overcome these limitations and enhance therapeutic efficacy, nanotechnology was utilized to synthesize Th-ZnNPs.

View Article and Find Full Text PDF

Introduction: This study investigated biosynthetically derived β-chitosan-derived zinc nanoparticles (β-Ch-Zn NPs) for their potential anti-inflammatory properties on McCoy cells. β-Ch-Zn NPs were synthesized using a green chemistry approach, and their characterization confirmed successful synthesis, appropriate size, and morphology. The study aimed to evaluate the cytotoxicity of β-Ch-Zn NPs and their effects on inflammatory responses in McCoy cells stimulated with lipopolysaccharide (LPS).

View Article and Find Full Text PDF

Introduction Recent studies have explored alternative methods to enhance caries prevention and treatment. Luteolin compound has been noted for its antimicrobial properties, while zinc nanoparticles (Zn NPs) are recognized for their potent antibacterial effects. This study investigates the synthesis, characterization, and antimicrobial efficacy of luteolin-loaded Zn oxide NPs (Luteo-ZnONPs) against cariogenic bacteria.

View Article and Find Full Text PDF

Cancer continually remains a severe threat to public health and requires constant demand for novel therapeutic drug candidates. Due to their multi-target orientation, lesser toxicity, and easy availability, natural compounds attract more attention from current scientific research interest than synthetic drug molecules. The plants and microorganisms produce a huge variety of secondary metabolites because of their physiological diversification, and the seaweeds occupy a prominent position as effective drug resources.

View Article and Find Full Text PDF

Introduction Dental caries, primarily caused by cariogenic microorganisms, remains a significant global health concern. β-Chitosan, known for its biofilm-targeting properties, and zinc oxide (ZnO) nanoparticles (NPs), recognized for their potent antimicrobial effects, offer a promising approach for caries prevention and treatment. This study investigates the synthesis, characterization, and antimicrobial properties of β-Chitosan-derived ZnO NPs (β-Ch-ZnO-NPs) against these pathogens.

View Article and Find Full Text PDF

Objective: Abnormal expression of EGFR (epidermal growth factor receptor) results in different types of human tumors. Quinazoline-containing derivative signify an attractive platform for EGFR inhibitors. The present study aims to discover the potential binders of a group of compounds belonging to oxazolo[4,5-g]quinazoline-2(1H)-one derivative as EGFR inhibitors.

View Article and Find Full Text PDF

Two cobalt(III) Schiff base complexes, trans-[Co(salen)(DA)](ClO) (1) and trans-[Co(salophen)(DA)](ClO) (2) (where salen: N,N'-bis(salicylidene)ethylenediamine, salopen: N,N'-bis(salicylidene)-1,2-phenylenediamine, DA: dodecylamine) were synthesised and characterised using various spectroscopic and analytical techniques. The binding affinity of both the complexes with CT-DNA was explored adopting UV-visible, fluorescence, circular dichroism spectroscopy and cyclic voltammetry techniques. The results revealed that both the complexes interacted with DNA via intercalation as well as notable groove binding.

View Article and Find Full Text PDF

Acriflavine hydrochloride (AFN) is a prospective drug worn in the eradication of HIV1 infection. The toxicity and adverse side effects renders the potent drug to limits its usage. However, to overcome the dilemma we have aimed to select carriers with great complexation efficiencies in different cyclodextrins (CDs) of varying cavity size.

View Article and Find Full Text PDF