All forms of chronic pulmonary hypertension (PH) are characterized by structural remodeling of the pulmonary artery (PA) media, a process previously attributed solely to changes in the phenotype of resident smooth muscle cells (SMC). However, recent experimental evidence in both systemic and pulmonary circulations suggests that other cell types, including circulating and local progenitors, contribute significantly to this process. The goal of this study was to determine if hypoxia-induced remodeling of distal PA (dPA) media involves the emergence of cells with phenotypic and functional characteristics distinct from those of resident dPA SMC and fibroblasts.
View Article and Find Full Text PDFThe media of the normal bovine main pulmonary artery (MPA) is composed of phenotypically heterogeneous smooth muscle cells (SMC) with markedly different proliferative capabilities in response to serum, mitogens, and hypoxia. Little, however, is known of the SMC phenotype in distal pulmonary arteries (PA), particularly in arterioles, which regulate the pulmonary circulation. With a panel of muscle-specific antibodies against alpha-smooth muscle (SM)-actin, SM-myosin heavy chains (SM-MHC), SM-MHC-B isoform, desmin, and meta-vinculin, we demonstrate a progressive increase in phenotypic uniformity and level of differentiation of SMC along the proximal-to-distal axis of normal adult bovine pulmonary circulation so that the media of distal PA (1,500- to 100-microm diameter) is composed of a phenotypically uniform population of "well-differentiated" SMC.
View Article and Find Full Text PDF