Climate change scenarios predict an increase in air temperature and precipitation in northern temperate regions of Europe by the end of the century. Increasing atmospheric humidity inevitably resulting from more frequent rainfall events reduces water flux through vegetation, influencing plants' structure and functioning. We investigated the extent to which artificially elevated air humidity affects the anatomical structure of the vascular system and hydraulic conductance of leaves in Betula pendula.
View Article and Find Full Text PDFClimate models predict greater increases in the frequency than in the amount of precipitation and a consequent rise in atmospheric humidity at high latitudes by the end of the century. We investigated the responses of hydraulic and relevant anatomical traits of xylem to elevated relative humidity of air on a 1-yr-old coppice of hybrid aspen (Populus×wettsteinii) growing in the experimental stand at the Free Air Humidity Manipulation site in Eastern Estonia. The hydraulic conductivity of stems was measured with a high pressure flow meter; artificial cavitation in the stem segments was induced by the air injection method.
View Article and Find Full Text PDFThis study was performed on hybrid aspen saplings growing at the Free Air Humidity Manipulation site in Estonia. We investigated changes in wood anatomy and hydraulic conductivity in response to increased air humidity. Two hydraulic traits (specific conductivity and leaf-specific conductivity) and four anatomical traits of stem wood-relative vessel area (VA), vessel density (VD), pit area and pit aperture area-were influenced by the humidity manipulation.
View Article and Find Full Text PDF