All herpesviruses encode a conserved DNA polymerase that is required for viral genome replication and serves as an important therapeutic target. Currently available herpesvirus therapies include nucleoside and non-nucleoside inhibitors (NNI) that target the DNA-bound state of herpesvirus polymerase and block replication. Here we report the ternary complex crystal structure of Herpes Simplex Virus 1 DNA polymerase bound to DNA and a 4-oxo-dihydroquinoline NNI, PNU-183792 (PNU), at 3.
View Article and Find Full Text PDFIndoleamine-2,3-dioxygenase-1 (IDO1) has emerged as a target of significant interest to the field of cancer immunotherapy, as the upregulation of IDO1 in certain cancers has been linked to host immune evasion and poor prognosis for patients. In particular, IDO1 inhibition is of interest as a combination therapy with immune checkpoint inhibition. Through an Automated Ligand Identification System (ALIS) screen, a diamide class of compounds was identified as a promising lead for the inhibition of IDO1.
View Article and Find Full Text PDFAllosteric integrase inhibitors (ALLINIs) bind to the lens epithelial-derived growth factor (LEDGF) pocket on HIV-1 integrase (IN) and possess potent antiviral effects. Rather than blocking proviral integration, ALLINIs trigger IN conformational changes that have catastrophic effects on viral maturation, rendering the virions assembled in the presence of ALLINIs noninfectious. A high-throughput screen for compounds that disrupt the IN·LEDGF interaction was executed, and extensive triage led to the identification of a t-butylsulfonamide series, as exemplified by 1.
View Article and Find Full Text PDF