Rationale: Decades of research have examined immune-modulatory strategies to protect the heart after an acute myocardial infarction and prevent progression to heart failure but have failed to translate to clinical benefit.
Objective: To determine anti-inflammatory actions of n-apo AI (Apo AI nanoparticles) that contribute to cardiac tissue recovery after myocardial infarction.
Methods And Results: Using a preclinical mouse model of myocardial infarction, we demonstrate that a single intravenous bolus of n-apo AI (CSL111, 80 mg/kg) delivered immediately after reperfusion reduced the systemic and cardiac inflammatory response.
Background Although acute coronary syndromes (ACS) are a major cause of morbidity and mortality, relationships with biologically active lipid species potentially associated with plaque disruption/erosion in the context of their lipoprotein carriers are indeterminate. The aim was to characterize lipid species within lipoprotein particles which differentiate ACS from stable coronary artery disease. Methods and Results Venous blood was obtained from 130 individuals with de novo presentation of an ACS (n=47) or stable coronary artery disease (n=83) before coronary catheterization.
View Article and Find Full Text PDFProtecting the heart after an acute coronary syndrome is a key therapeutic goal to support cardiac recovery and prevent progression to heart failure. A potential strategy is to target cardiac glucose metabolism at the early stages after ischemia when glycolysis is critical for myocyte survival. Building on our discovery that high-density lipoprotein (HDL) modulates skeletal muscle glucose metabolism, we now demonstrate that a single dose of reconstituted HDL (rHDL) delivered after myocardial ischemia increases cardiac glucose uptake, reduces infarct size, and improves cardiac remodeling in association with enhanced functional recovery in mice.
View Article and Find Full Text PDF