The interplay between short-range attractions and long-range repulsions (SALR) characterizes the so-called liquids with competing interactions, which are known to exhibit a variety of equilibrium and non-equilibrium phases. The theoretical description of the phenomenology associated with glassy or gel states in these systems has to take into account both the presence of thermodynamic instabilities (such as those defining the spinodal line and the so called λ line) and the limited capability to describe genuine non-equilibrium processes from first principles. Here, we report the first application of the non-equilibrium self-consistent generalized Langevin equation theory to the description of the dynamical arrest processes that occur in SALR systems after being instantaneously quenched into a state point in the regions of thermodynamic instability.
View Article and Find Full Text PDFThe interplay of liquid-liquid phase separation (LLPS) and dynamical arrest can lead to the formation of gels and glasses, which is relevant for such diverse fields as condensed matter physics, materials science, food engineering, and the pharmaceutical industry. In this context, protein solutions exhibit remarkable equilibrium and non-equilibrium behaviors. In the regime where attractive and repulsive forces compete, it has been demonstrated, for example, that the location of the dynamical arrest line seems to be independent of ionic strength, so that the arrest lines at different ionic screening lengths overlap, in contrast to the LLPS coexistence curves, which strongly depend on the salt concentration.
View Article and Find Full Text PDFWe investigate the structural relaxation of a soft-sphere liquid quenched isochorically (ϕ = 0.7) and instantaneously to different temperatures T above and below the glass transition. For this, we combine extensive Brownian dynamics simulations and theoretical calculations based on the non-equilibrium self-consistent generalized Langevin equation (NE-SCGLE) theory.
View Article and Find Full Text PDFProviding a physically sound explanation of aging phenomena in non-equilibrium amorphous materials is a challenging problem in modern statistical thermodynamics. The slow evolution of physical properties after quenches of control parameters is empirically well interpreted via the concept of material time (or internal clock) based on the Tool-Narayanaswamy-Moynihan model. Yet, the fundamental reasons of its striking success remain unclear.
View Article and Find Full Text PDFThe recently developed non-equilibrium self-consistent generalized Langevin equation theory of the dynamics of liquids of non-spherically interacting particles [20167975] is applied to the description of the irreversible relaxation of a thermally and mechanically quenched dipolar fluid. Specifically, we consider a dipolar hard-sphere liquid quenched (at= 0) from full equilibrium conditions towards different ergodic-non-ergodic transitions. Qualitatively different scenarios are predicted by the theory for the time evolution of the system after the quench (> 0), that depend on both the kind of transition approached and the specific features of the protocol of preparation.
View Article and Find Full Text PDFThe time-evolution equation for the time-dependent static structure factor of the non-equilibrium self-consistent generalized Langevin equation (NE-SCGLE) theory was used to investigate the kinetics of glass-forming systems under isochoric conditions. The kinetics are studied within the framework of the fictive temperature (T) of the glassy structure. We solve for the kinetics of T(t) and the time-dependent structure factor and find that they are different but closely related by a function that depends only on temperature.
View Article and Find Full Text PDFUnder numerous circumstances, many soft and hard materials are present in a puzzling wealth of non-equilibrium amorphous states, whose properties are not stationary and depend on preparation. They are often summarized in unconventional "phase diagrams" that exhibit new "phases" and/or "transitions" in which time, however, is an essential variable. This work proposes a solution to the problem of theoretically defining and predicting these non-equilibrium phases and their time-evolving phase diagrams, given the underlying molecular interactions.
View Article and Find Full Text PDFThe fundamental understanding of the dynamic and transport properties of liquids is crucial for the better processing of most materials. The usefulness of this understanding increases when it involves general scaling rules, such as the concept of the hard-sphere dynamic universality class, which provides a unifying scaling of the dynamics of soft-sphere repulsive systems. A relevant question is how far this concept extends to systems that also involve attractive interactions.
View Article and Find Full Text PDFWe investigate the static correlations of a dipolar fluid in terms of the irreducible coefficients of the spherical harmonic expansion of the static structure factor. To this end, we develop a theoretical framework based on a soft-core version of Wertheim's solution of the mean spherical approximation (MSA), which renders the analytical determination of such coefficients possible. The accuracy of this approximation is tested by a comparison against the results obtained with the assistance of extensive molecular dynamics simulations at different regimes of concentration and temperature.
View Article and Find Full Text PDFWe report the combined results of molecular dynamics simulations and theoretical calculations concerning various dynamical arrest transitions in a model system representing a dipolar fluid, namely, N (soft core) rigid spheres interacting through a truncated dipole-dipole potential. By exploring different regimes of concentration and temperature, we find three distinct scenarios for the slowing down of the dynamics of the translational and orientational degrees of freedom: at low (η = 0.2) and intermediate (η = 0.
View Article and Find Full Text PDFRecent experiments and computer simulations have revealed intriguing phenomenological fingerprints of the interference between the ordinary equilibrium gas-liquid phase transition and the non-equilibrium glass and gel transitions. We thus now know, for example, that the liquid-gas spinodal line and the glass transition loci intersect at a finite temperature and density, that when the gel and the glass transitions meet, mechanisms for multistep relaxation emerge, and that the formation of gels exhibits puzzling latency effects. In this work we demonstrate that the kinetic perspective of the non-equilibrium self-consistent generalized Langevin equation (NE-SCGLE) theory of irreversible processes in liquids provides a unifying first-principles microscopic theoretical framework to describe these and other phenomena associated with spinodal decomposition, gelation, glass transition, and their combinations.
View Article and Find Full Text PDFWe perform a systematic and detailed study of the glass transition in highly asymmetric binary mixtures of colloidal hard spheres, combining differential dynamic microscopy experiments, event-driven molecular dynamics simulations, and theoretical calculations, exploring the whole state diagram and determining the self-dynamics and collective dynamics of both species. Two distinct glassy states involving different dynamical arrest transitions are consistently described, namely, a double glass with the simultaneous arrest of the self-dynamics and collective dynamics of both species, and a single glass of large particles in which the self-dynamics of the small species remains ergodic. In the single-glass scenario, spatial modulations in the collective dynamics of both species occur due to the structure of the large spheres, a feature not observed in the double-glass domain.
View Article and Find Full Text PDFWe report an experimental and theoretical investigation of glass formation in soft thermo-sensitive colloids following two different routes: a gradual increase of the particle number density at constant temperature and an increase of the radius in a fixed volume at constant particle number density. Confocal microscopy experiments and the non-equilibrium self-consistent generalized Langevin equation (NE-SCGLE) theory consistently show that the two routes lead to a dynamically comparable state at sufficiently long aging times. However, experiments reveal the presence of moderate but persistent structural differences.
View Article and Find Full Text PDFUpon compression, the equilibrium hard-sphere liquid [pair potential u(r)] freezes at a packing fraction ϕ = 0.494 or, if crystallization is prevented, becomes metastable up to its glass transition at ϕ ≈ 0.58.
View Article and Find Full Text PDFThe Ornstein-Uhlenbeck stochastic process is an exact mathematical model providing accurate representations of many real dynamic processes in systems in a stationary state. When applied to the description of random motion of particles such as that of Brownian particles, it provides exact predictions coinciding with those of the Langevin equation but not restricted to systems in thermal equilibrium but only conditioned to be stationary. Here, we investigate experimentally single particle motion in a two-dimensional granular system in a stationary state, consisting of 1 mm stainless balls on a plane circular surface.
View Article and Find Full Text PDFUnderstanding glasses and the glass transition requires comprehending the nature of the crossover from the ergodic (or equilibrium) regime, in which the stationary properties of the system have no history dependence, to the mysterious glass transition region, where the measured properties are nonstationary and depend on the protocol of preparation. In this work we use nonequilibrium molecular dynamics simulations to test the main features of the crossover predicted by the molecular version of the recently developed multicomponent nonequilibrium self-consistent generalized Langevin equation theory. According to this theory, the glass transition involves the abrupt passage from the ordinary pattern of full equilibration to the aging scenario characteristic of glass-forming liquids.
View Article and Find Full Text PDFThe recent predictions of the self-consistent generalized Langevin equation theory, describing the existence of unusual partially arrested states in the context of ionic liquids, were probed using all-atom molecular dynamics simulations of a room-temperature ionic liquid. We have found a slower diffusion of the smaller anions compared with the large cations for a wide range of temperatures. The arrest mechanism consists on the formation of a strongly repulsive glass by the anions, stabilized by the long range electrostatic potential.
View Article and Find Full Text PDFThe nonequilibrium self-consistent generalized Langevin equation theory of irreversible processes in liquids is extended to describe the positional and orientational thermal fluctuations of the instantaneous local concentration profile n(r,Ω,t) of a suddenly quenched colloidal liquid of particles interacting through nonspherically symmetric pairwise interactions, whose mean value n(r,Ω,t) is constrained to remain uniform and isotropic, n (r,Ω, t) = n (t). Such self-consistent theory is cast in terms of the time-evolution equation of the covariance [Formula: see text] of the fluctuations [Formula: see text] of the spherical harmonics projections nlm(k;t) of the Fourier transform of n(r,Ω,t). The resulting theory describes the nonequilibrium evolution after a sudden temperature quench of both, the static structure factor projections Slm(k,t) and the two-time correlation function [Formula: see text], where τ is the correlation delay time and t is the evolution or waiting time after the quench.
View Article and Find Full Text PDFThe non-equilibrium self-consistent generalized Langevin equation theory of irreversible relaxation [P. E. Ramŕez-González and M.
View Article and Find Full Text PDFThe mobility of a colloidal particle in a crowded and confined environment may be severely reduced by its interactions with other mobile colloidal particles and the fixed obstacles through which it diffuses. The latter may be modelled as an array of obstacles with random fixed positions. In this contribution, we report on the effects of the size-polydispersity of such fixed obstacles on the immobilization and dynamical arrest of the diffusing colloidal particles.
View Article and Find Full Text PDFIn this work we report experimental and theoretical results for the motion of single colloidal particles embedded in complex fluids with different interparticle interactions. The motion of particles is found to follow a similar behavior for the different systems. In particular, the transition from the short-time diffusive motion to the subdiffusive intermediate-time motion is found to occur when the square root of its mean squared displacement is in the order of 1 tenth of the neighbors' interparticle distance, thus following a quantitative criterion similar to Lindemann's criterion for melting.
View Article and Find Full Text PDFThe non-equilibrium self-consistent generalized Langevin equation theory of irreversible processes in glass-forming liquids [P. Ramírez-González and M. Medina-Noyola, Phys.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
October 2013
We perform systematic simulation experiments on model systems with soft-sphere repulsive interactions to test the predicted dynamic equivalence between soft-sphere liquids with similar static structure. For this we compare the simulated dynamics (mean squared displacement, intermediate scattering function, α-relaxation time, etc.) of different soft-sphere systems, between them and with the hard-sphere liquid.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
May 2013
The recently developed nonequilibrium extension of the self-consistent generalized Langevin equation theory of irreversible relaxation [Ramírez-González and Medina-Noyola, Phys. Rev. E 82, 061503 (2010); Ramírez-González and Medina-Noyola, Phys.
View Article and Find Full Text PDFUsing the generalized Langevin equation formalism and the process of contraction of the description we derive a general memory function equation for the thermal fluctuations of the local density of a simple atomic liquid. From the analysis of the long-time limit of this equation, a striking equivalence is suggested between the long-time dynamics of the atomic liquid and the dynamics of the corresponding Brownian liquid. This dynamic equivalence is confirmed here by comparing molecular and Brownian dynamics simulations of the self-intermediate scattering function and the long-time self-diffusion coefficient for the hard-sphere liquid.
View Article and Find Full Text PDF