Cytokines such as interleukin-6 induce tyrosine and serine phosphorylation of Stat3 that results in activation of Stat3-responsive genes. We provide evidence that Stat3 is present in the mitochondria of cultured cells and primary tissues, including the liver and heart. In Stat3(-/-) cells, the activities of complexes I and II of the electron transport chain (ETC) were significantly decreased.
View Article and Find Full Text PDFLipid accumulation in nonadipose tissue due to enhanced circulating fatty acids may play a role in the pathophysiology of heart failure, obesity, and diabetes. Accumulation of myocardial lipids and related intermediates, e.g.
View Article and Find Full Text PDFChronic injection of dextran into normal mice elicits a glomerulonephritis (GN) that models IgA nephropathy (IgAN) in humans. Since athymic mice lack T cells but nonetheless develop antibodies to polysaccharide antigens such as dextran (DEX), we used athymic mice to study the role of T lymphocytes in the induction of this form of GN, independent of the role of T cells in antibody synthesis. Both mice given injections of diethylaminoethyl (DEAE)-DEX and uninjected mice had circulating IgM and IgA anti-DEX antibodies, which apparently arise as 'natural antibodies', but immune complex GN was observed only in the injected mice.
View Article and Find Full Text PDFSubsarcolemmal mitochondria sustain progressive damage during myocardial ischemia. Ischemia decreases the content of the mitochondrial phospholipid cardiolipin accompanied by a decrease in cytochrome c content and a diminished rate of oxidation through cytochrome oxidase. We propose that during ischemia mitochondria produce reactive oxygen species at sites in the electron transport chain proximal to cytochrome oxidase that contribute to the ischemic damage.
View Article and Find Full Text PDFIschemia and reperfusion result in mitochondrial dysfunction, with decreases in oxidative capacity, loss of cytochrome c, and generation of reactive oxygen species. During ischemia of the isolated perfused rabbit heart, subsarcolemmal mitochondria, located beneath the plasma membrane, sustain a loss of the phospholipid cardiolipin, with decreases in oxidative metabolism through cytochrome oxidase and the loss of cytochrome c. We asked whether additional injury to the distal electron chain involving cardiolipin with loss of cytochrome c and cytochrome oxidase occurs during reperfusion.
View Article and Find Full Text PDF