Undulatory swimming is the predominant form of locomotion in aquatic vertebrates. A myriad of animals of different species and sizes oscillate their bodies to propel themselves in aquatic environments with swimming speed scaling as the product of the animal length by the oscillation frequency. Although frequency tuning is the primary means by which a swimmer selects its speed, there is no consensus on the mechanisms involved.
View Article and Find Full Text PDFMachine learning is often cited as a new paradigm in control theory, but is also often viewed as empirical and less intuitive for students than classical model-based methods. This is particularly the case for reinforcement learning, an approach that does not require any mathematical model to drive a system inside an unknown environment. This lack of intuition can be an obstacle to design experiments and implement this approach.
View Article and Find Full Text PDFWe probe the complex rheological behaviour of liquid foams flowing through a conical constriction. With fast X-ray tomographic microscopy we measure the displacement and deformation of up to fifty thousand bubbles at any single time instance while varying systematically the foam liquid fraction, the bubble size and the flow direction - convergent divergent. The large statistics and high spatio-temporal resolution allows to observe and quantify the deviations from a purely viscous flow.
View Article and Find Full Text PDFMuscles and tendons, actuators in robotics, and various sports implements are examples that exploit elasticity to accelerate objects. Tuning the mechanical properties of elastic elements connecting objects can greatly enhance the transfer of mechanical energy between the objects. Here, we study experimentally the throw of rigid projectiles by an actuator, which has a soft elastic element added to the distal end.
View Article and Find Full Text PDFIntracellular pH is a vital parameter that is maintained close to neutrality in all mammalian cells and tissues and acidic in most intracellular compartments. After presenting the main techniques used for intracellular an vesicular pH measurements we will briefly recall the main molecular mechanisms that affect and regulate intracellular pH. Following this we will discuss the large functional redundancy found in the transporters of H or acid-base equivalents.
View Article and Find Full Text PDFWe investigate the impact of composite objects. They consist of a soft layer on top of a rigid part with a hemispherical impacting end. The coefficient of restitution (e) of such objects is studied systematically as a function of the mass ratio and of the nature of the materials.
View Article and Find Full Text PDFWe focus in this work on the effect of the surface energy anisotropy on an elastically strained semiconductor film and in particular on its role on the coarsening dynamics of elastically strained islands. To study the dynamics of a strained film, we establish a one-dimensional nonlinear and nonlocal partial differential equation which takes into account the elastic, capillary, wetting, and anisotropic effects. We first construct an approximate stationary solution of our model using a variational method and an appropriate ansatz.
View Article and Find Full Text PDFWe investigate the formation and the coarsening dynamics of islands in a strained epitaxial semiconductor film. These islands are commonly observed in thin films undergoing a morphological instability due to the presence of the elastocapillary effect. We first describe both analytically and numerically the formation of an equilibrium island using a two-dimensional continuous model.
View Article and Find Full Text PDFWe report an experimental study of bubble dynamics in a non-Newtonian fluid subjected to a pressure decrease. The fluid is a hydrogel, composed of water and a synthetic clay, prepared and sandwiched between two glass plates in a Hele-Shaw geometry. The rheological properties of the material can be tuned by the clay concentration.
View Article and Find Full Text PDFInertial swimmers use flexural movements to push water and generate thrust. We quantify this dynamical process for a slender body in a fluid by accounting for passive elasticity and hydrodynamics and active muscular force generation and proprioception. Our coupled elastohydrodynamic model takes the form of a nonlinear eigenvalue problem for the swimming speed and locomotion gait.
View Article and Find Full Text PDFWe describe the construction of a fully tractable mathematical model for intracellular pH. This work is based on coupling the kinetic equations depicting the molecular mechanisms for pumps, transporters and chemical reactions, which determine this parameter in eukaryotic cells. Thus, our system also calculates the membrane potential and the cytosolic ionic composition.
View Article and Find Full Text PDFWe propose a model that captures the dynamics of a carnivorous plant, Utricularia inflata. This plant possesses tiny traps for capturing small aquatic animals. Glands pump water out of the trap, yielding a negative pressure difference between the plant and its surroundings.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
January 2010
A free vortex in excitable media can be displaced and removed by a wave train. However, simple physical arguments suggest that vortices anchored to large inexcitable obstacles cannot be removed similarly. We show that unpinning of vortices attached to obstacles smaller than the core radius of the free vortex is possible through pacing.
View Article and Find Full Text PDFWe give an explanation for the onset of fluid-flow-induced flutter in a flag. Our theory accounts for the various physical mechanisms at work: the finite length and the small but finite bending stiffness of the flag, the unsteadiness of the flow, the added mass effect, and vortex shedding from the trailing edge. Our analysis allows us to predict a critical speed for the onset of flapping as well as the frequency of flapping.
View Article and Find Full Text PDF