Several research works in the literature have focused on understanding the post-infarction ventricular remodelling phenomenon, but few works have considered the evaluation of the elastic behaviour of the cardiac tissue after a myocardial infarction. This paper presents an investigation focused on predicting the elastic performance of the human heart after a left ventricular apical infarction. The aim is to understand the elastic alterations of the cardiac fibres at different periods after an apical infarct.
View Article and Find Full Text PDFToday, human gait analysis is commonly used for clinical diagnosis, rehabilitation and performance improvement in sports. However, although previous research works in the literature address the use of motion capture systems by means of optoelectronic sensors, Inertial Measurement Units (IMUs) and depth cameras, few of them discuss their conception, guidelines and algorithms for measuring and calculating gait metrics. Moreover, commercially available motion capture systems, although efficient, are cost restrictive for most of the low-income institutions.
View Article and Find Full Text PDFThe traditional educational process of blind people is a complex practice that relies on the haptic perception (tactile perception) of physical models. However, physical models may be costly, inaccessible or may require a large storage space. To overcome these difficulties, in this article a virtual haptic perception approach to support the teaching and learning process of blind people is proposed.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
April 2019
Conventional Orthognathic surgery (OGS) planning involves cephalometric analyses and dental casts to be mounted on an articulator. Dental segments are subsequently identified, cut and repositioned to allow the fabrication of intraoral wafers that guide the positioning of the osteotomy bone segments. This conventional planning introduces many inaccuracies that affect the post-surgery outcomes.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
August 2018
Although several numerical models of the human heart have been proposed in the literature, there are still several discrepancies among the results predicted by each model. These discrepancies can be attributed to the fact that each model has a number of assumptions and simplifications, which can limit the scope and precision of the numerical predictions obtained. Moreover, none of the works reported in the literature have assessed the influence of modelling assumptions on the predicted cardiac fiber elastic properties.
View Article and Find Full Text PDFThe modelling of virtual environments and scenarios is an important area of research for the development of new computer-assisted systems in the areas of engineering and medicine, particularly in the area of biomechanics and biomedical engineering. One of the main issues while designing a virtual environment is the level of realism, which depends on the computing capacity and the level of accuracy and usefulness of the generated data. Thus, the dilemma is between the aesthetic realism and the information utility.
View Article and Find Full Text PDFPassive knee prostheses require a significant amount of additional metabolic energy to carry out a gait cycle, therefore affecting the natural human walk performance. Current active knee prostheses are still limited because they do not reply with accuracy of the natural human knee movement, and the time response is relatively large. This paper presents the design and control of a new biomimetic-controlled transfemoral knee prosthesis based on a polycentric-type mechanism.
View Article and Find Full Text PDFBackground And Objective: In oral and maxillofacial surgery, conventional radiographic cephalometry is one of the standard auxiliary tools for diagnosis and surgical planning. While contemporary computer-assisted cephalometric systems and methodologies support cephalometric analysis, they tend neither to be practical nor intuitive for practitioners. This is particularly the case for 3D methods since the associated landmarking process is difficult and time consuming.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
August 2015
The use of hydroxyapatite (HA) scaffolds for bone regeneration is an alternative procedure to treat bone defects due to cancer, other diseases or traumas. Although the use of HA has been widely studied in the literature, there are still some disparities regarding its mechanical performance. This paper presents a complete analysis of the structural performance of porous HA scaffolds based on experimental tests, numerical simulations and theoretical studies.
View Article and Find Full Text PDF