Objective: To gain an understanding of the effectiveness of golimumab in a 'real-world' setting.
Design: Retrospective cohort study using prospectively maintained clinical records.
Setting: Two UK tertiary IBD centres.
Equine herpesvirus 1 (EHV-1) causes respiratory disease, abortion, neonatal death and neurological disease in equines and is endemic in most countries. The viral factors that influence EHV-1 disease severity are poorly understood, and this has hampered vaccine development. However, the N752D substitution in the viral DNA polymerase catalytic subunit has been shown statistically to be associated with neurological disease.
View Article and Find Full Text PDFObjective: To gain an understanding of the efficacy of vedolizumab in a 'real-world' setting.
Design: Retrospective cohort study using prospectively maintained clinical records.
Setting: Two UK tertiary inflammatory bowel disease (IBD) centres.
Critical interpretive synthesis is a particular form of systematic review that critically examines the decisions made by authors while conducting and publishing about their research and practices. It differs from empirical syntheses of qualitative research by emphasizing the interpreted and constructed nature of this form of secondary analysis. In this article, we extend previous literature on critical interpretive syntheses by highlighting the integration of emotional responses when developing critical questions for interrogating the literature and interpreting results.
View Article and Find Full Text PDFEquine influenza viruses are a major cause of respiratory disease in horses worldwide and undergo antigenic drift. Several outbreaks of equine influenza occurred worldwide during 2010-2012, including in vaccinated animals, highlighting the importance of surveillance and virus characterisation. Virus isolates were characterised from more than 20 outbreaks over a 3-year period, including strains from the UK, Dubai, Germany and the USA.
View Article and Find Full Text PDFInfluenza Other Respir Viruses
December 2013
Background: Many human strains of influenza A virus produce highly pleomorphic virus particles that at the extremes can be approximated as either spheres of around 100 nm diameter or filaments of similar cross-section but elongated to lengths of many microns. The role filamentous virions play in the virus life cycle remains enigmatic.
Objectives/methods: Here, we set out to define the morphology and genetics of virus particle shape in equine influenza A virus, using reverse genetics and microscopy of infected cells.
The mechanism of membrane scission during influenza A virus budding has been the subject of controversy. We confirm that influenza M1 binds VPS28, a subunit of the ESCRT-1 complex. However, confocal microscopy of infected cells showed no marked colocalisation between M1 and VPS28 or VPS4 ESCRT proteins, or relocalisation of the cellular proteins.
View Article and Find Full Text PDFThe influenza A virus RNA-dependent RNA polymerase is a heterotrimer composed of PB1, PB2 and PA subunits and essential for viral replication. However, little detailed structural information is available for this important enzyme. We show by circular dichroism spectroscopy that polypeptides from the C-terminus of PB1 that are capable of binding efficiently to PB2 fold into stable alpha-helical structures.
View Article and Find Full Text PDFMany viruses exploit cellular polarity to constrain the assembly and release of progeny virions to a desired surface. Influenza virus particles are released only from the apical surface of epithelial cells and this polarization is partly owing to specific targeting of the viral membrane proteins to the apical plasma membrane. The RNA genome of the virus is transcribed and replicated in the nucleus, necessitating nuclear export of the individual ribonucleoprotein (RNP) segments before they can be incorporated into budding virus particles.
View Article and Find Full Text PDFInfluenza A virus transcribes its segmented negative sense RNA genome in the nuclei of infected cells in a process long known to require host RNA polymerase II (RNAP-II). RNA polymerase II synthesizes pre-mRNAs whose 5'-cap structures are scavenged by the viral RNA-dependent RNA polymerase during synthesis of viral mRNAs. Drugs that inhibit RNAP-II therefore block viral replication, but not necessarily solely by denying the viral polymerase a source of cap-donor molecules.
View Article and Find Full Text PDFInfluenza virus genomic RNA segments are packaged into ribonucleoprotein (RNP) structures by the PB1, PB2, and PA subunits of an RNA polymerase and a single-strand RNA-binding nucleoprotein (NP). Assembly and function of these ribonucleoproteins depend on a complex set of protein-protein and protein-RNA interactions. Here, we identify new functional domains of PB2.
View Article and Find Full Text PDFThe first 11 nt at the 5' end of influenza virus genomic RNA were shown to be both necessary and sufficient for specific binding by the influenza virus polymerase. A novel in vitro transcription assay, in which the polymerase was bound to paramagnetic beads via a biotinylated 5'-vRNA oligonucleotide, was used to study the activities of different forms of the polymerase. Complexes composed of co-expressed PB1/PB2/PA proteins and a sub-complex composed of PB1/PA bound to the 5'-vRNA oligonucleotide, whereas PB1 expressed alone did not.
View Article and Find Full Text PDFInfluenza virus transcription occurs in the nuclei of infected cells, where the viral genomic RNAs are complexed with a nucleoprotein (NP) to form ribonucleoprotein (RNP) structures. Prior to assembly into progeny virions, these RNPs exit the nucleus and accumulate in the cytoplasm. The mechanisms responsible for RNP export are only partially understood but have been proposed to involve the viral M1 and NS2 polypeptides.
View Article and Find Full Text PDFThe influenza virus nucleoprotein (NP) is a single-strand-RNA-binding protein associated with genome and antigenome RNA and is one of the four virus proteins necessary for transcription and replication of viral RNA. To better characterize the mechanism by which NP binds RNA, we undertook a physical and mutational analysis of the polypeptide, with the strategy of identifying first the regions in direct contact with RNA, then the classes of amino acids involved, and finally the crucial residues by mutagenesis. Chemical fragmentation and amino acid sequencing of NP that had been UV cross linked to radiolabelled RNA showed that protein-RNA contacts occur throughout the length of the polypeptide.
View Article and Find Full Text PDFThe negative-sense segmented RNA genome of influenza virus is transcribed into capped and polyadenylated mRNAs, as well as full-length replicative intermediates (cRNAs). The mechanism that regulates the two forms of transcription remains unclear, although several lines of evidence imply a role for the viral nucleoprotein (NP). In particular, temperature-shift and biochemical analyses of the temperature-sensitive viruses A/WSN/33 ts56 and A/FPV/Rostock/34/Giessen tsG81 containing point mutations within the NP coding region have indicated specific defects in replicative transcription at the nonpermissive temperature.
View Article and Find Full Text PDFHPV late gene expression is initiated as an infected basal cell migrates through the differentiating layers of the epidermis, resulting in the onset of vegetative viral DNA replication and the expression of viral late proteins. We have used a large synthetic immunoglobulin library displayed on phage (diversity 6.5 x 10(10) phage) to isolate three Fabs (TVG405, 406, and 407) which recognize distinct epitopes on the E4 late protein of HPV16.
View Article and Find Full Text PDF