Publications by authors named "Mechelle R Bennett"

Living organisms can synthesize a wide range of macromolecules from a small set of natural building blocks, yet there is potential for even greater materials diversity by exploiting biochemical processes to convert unnatural feedstocks into new abiotic polymers. Ultimately, the synthesis of these polymers in situ might aid the coupling of organisms with synthetic matrices, and the generation of biohybrids or engineered living materials. The key step in biohybrid materials preparation is to harness the relevant biological pathways to produce synthetic polymers with predictable molar masses and defined architectures under ambient conditions.

View Article and Find Full Text PDF

The use of bacteria as catalysts for radical polymerisations of synthetic monomers has recently been established. However, the role of trans Plasma Membrane Electron Transport (tPMET) in modulating these processes is not well understood. We sort to study this by genetic engineering a part of the tPMET system NapC in .

View Article and Find Full Text PDF

The ability to harness cellular redox processes for abiotic synthesis might allow the preparation of engineered hybrid living systems. Towards this goal we describe a new bacteria-mediated iron-catalysed reversible deactivation radical polymerisation (RDRP), with a range of metal-chelating agents and monomers that can be used under ambient conditions with a bacterial redox initiation step to generate polymers. Cupriavidus metallidurans, Escherichia coli, and Clostridium sporogenes species were chosen for their redox enzyme systems and evaluated for their ability to induce polymer formation.

View Article and Find Full Text PDF

We report the synthesis of dual-responsive -acylated poly(aminoester) (NPAE)-based comb polymers with varying molecular composition and monomer sequence via a combination of spontaneous zwitterionic copolymerization and redox-initiated reversible addition-fragmentation chain transfer (RRAFT) polymerization. NPAE macromonomers were synthesized from different nucleophilic (M), for example, 2-ethyl-2-oxazoline (EtOx) or 2-ethyl-2-oxazine (EtOz), and electrophilic monomers (M), for example, acrylic acid (AA) or 2-carboxyethyl acrylate (CEA), to tune the hydrophilicity and sequence of the systems. The latter was found to influence the thermal properties and stability of the respective comb polymers.

View Article and Find Full Text PDF